University of Pennsylvania

Accounting Analytics

This course is part of Business Analytics Specialization

Taught in English

Some content may not be translated

Brian J Bushee
Christopher D. Ittner

Instructors: Brian J Bushee

110,641 already enrolled

Included with Coursera Plus

Course

Gain insight into a topic and learn the fundamentals

4.5

(2,969 reviews)

|

92%

9 hours (approximately)
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

4 quizzes

Course

Gain insight into a topic and learn the fundamentals

4.5

(2,969 reviews)

|

92%

9 hours (approximately)
Flexible schedule
Learn at your own pace

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Business Analytics Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

The topic for this week is ratio analysis and forecasting. Since ratio analysis involves financial statement numbers, I’ve included two optional videos that review financial statements and sources of financial data, in case you need a review. We will do a ratio analysis of a single company during the module. First, we’ll examine the company's strategy and business model, and then we'll look at the DuPont analysis. Next, we’ll analyze profitability and turnover ratios followed by an analysis of the liquidity ratios for the company. Once we've put together all the ratios, we can use them to forecast future financial statements. (If you’re interested in learning more, I’ve included another optional video, on valuation). By the end of this week, you’ll be able to do a ratio analysis of a company to identify the sources of its competitive advantage (or red flags of potential trouble), and then use that information to forecast its future financial statements.

What's included

9 videos2 readings1 quiz

This week we are going to examine "earnings management", which is the practice of trying to intentionally bias financial statements to look better than they really should look. Beginning with an overview of earnings management, we’ll cover means, motive, and opportunity: how managers actually make their earnings look better, their incentives for manipulating earnings, and how they get away with it. Then, we will investigate red flags for two different forms of revenue manipulation. Manipulating earnings through aggressive revenue recognition practices is the most common reason that companies get in trouble with government regulators for their accounting practices. Next, we will discuss red flags for manipulating earnings through aggressive expense recognition practices, which is the second most common reason that companies get in trouble for their accounting practices. By the end of this module, you’ll know how to spot earnings management and get a more accurate picture of earnings, so that you’ll be able to catch some bad guys in finance reporting!

What's included

6 videos2 readings1 quiz

This week, we’ll use big data approaches to try to detect earnings management. Specifically, we're going to use prediction models to try to predict how the financial statements would look if there were no manipulation by the manager. First, we’ll look at Discretionary Accruals Models, which try to model the non-cash portion of earnings or "accruals," where managers are making estimates to calculate revenues or expenses. Next, we'll talk about Discretionary Expenditure Models, which try to model the cash portion of earnings. Then we'll look at Fraud Prediction Models, which try to directly predict what types of companies are likely to commit frauds. Finally, we’ll explore something called Benford's Law, which examines the frequency with which certain numbers appear. If certain numbers appear more often than dictated by Benford's Law, it's an indication that the financial statements were potentially manipulated. These models represent the state of the art right now, and are what academics use to try to detect and predict earnings management. By the end of this module, you'll have a very strong tool kit that will help you try to detect financial statements that may have been manipulated by managers.

What's included

7 videos2 readings1 quiz

Linking non-financial metrics to financial performance is one of the most important things we do as managers, and also one of the most difficult. We need to forecast future financial performance, but we have to take non-financial actions to influence it. And we must be able to accurately predict the ultimate impact on financial performance of improving non-financial dimensions. In this module, we’ll examine how to uncover which non-financial performance measures predict financial results through asking fundamental questions, such as: of the hundreds of non-financial measures, which are the key drivers of financial success? How do you rank or weight non-financial measures which don’t share a common denominator? What performance targets are desirable? Finally, we’ll look at some comprehensive examples of how companies have used accounting analytics to show how investments in non-financial dimensions pay off in the future, and finish with some important organizational issues that commonly arise using these models. By the end of this module, you’ll know how predictive analytics can be used to determine what you should be measuring, how to weight very, very different performance measures when trying to analyze potential financial results, how to make trade-offs between short-term and long-term objectives, and how to set performance targets for optimal financial performance.

What's included

8 videos2 readings1 quiz

Instructors

Instructor ratings
4.6 (211 ratings)
Brian J Bushee
University of Pennsylvania
5 Courses438,554 learners

Offered by

Recommended if you're interested in Finance

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

Showing 3 of 2969

4.5

2,969 reviews

  • 5 stars

    65.03%

  • 4 stars

    22.76%

  • 3 stars

    7.64%

  • 2 stars

    2.66%

  • 1 star

    1.88%

RG
5

Reviewed on Jun 17, 2022

FA
5

Reviewed on Jun 11, 2018

RN
4

Reviewed on May 15, 2020

New to Finance? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions