Jul 13, 2017
Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!
Oct 23, 2017
The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).
By SIVARAMAKRISHNAN V
•Jan 06, 2017
Great course. Thanks Daphne Koller, this is really motivating :)
By Arjun V
•Dec 04, 2016
A great course, a must for those in the machine learning domain.
By Ka L K
•Mar 27, 2017
A five stars course. Prof. Koller is an outstanding scientists in this field. The first part just introduce you two basic frames of graphical models. So go further into second part is necessary if you want to have a bigger picture. The whole course is an introduction to the book - Probabilistic Graphical Models of Prof. Koller, so buying her book is also highly recommended. This course is supposed to be hard, so you should expect a steep learning curve. But all the efforts you made are worthy. I suggest coursera will consider put more challenging exercises in order to extent the concentration. Finally, a highly respect to Prof. Koller who provide the course in such a theoretical depth.
By David D
•May 30, 2017
Mind blowing!
By Anton K
•May 07, 2018
This was my first experience with Coursera! Thanks prof. Daphne Koller for this course and Coursera at all.
By Valeriy Z
•Nov 14, 2017
This course gives a solid basis for the understanding of PGMs. Don't take it too fast. It takes some time to get used to all the concepts.
By Roger T
•Mar 05, 2017
very challenging class but very rewarding as well!
By Simon T
•Jul 13, 2017
Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!
By Alexander A S G
•Feb 10, 2017
Thanks
By Alexander K
•May 16, 2017
Thank you for all. This is gift for us.
By mohammed o
•Oct 18, 2016
Fantastic
By Rishi C
•Jan 29, 2018
Perhaps the best introduction to AI/ML - especially for those who think "the future ain't what it used to be"; the mathematical techniques covered by the course form a toolkit which can be easily thought of as "core", i.e. a locus of strength which enables a wide universe of thinking about complex problems (many of which were correctly not thought to be tractable in practice until very recently!)...
By Eric S
•Feb 01, 2018
A very in depth course on PGNs. You definitely need some background in math and a willingness to invest a lot of time into the course. Of most value to me were the programming exercises. They are in Octave as this is one of the earliest Coursera courses, but it is worth exploring the provided implementations.
By Blake B
•May 21, 2017
Awesome intro to graphical models, and the exercises really emphasize understanding and proceed at what seems like the appropriate pace. Challenging for sure, you need to want to learn this stuff. Only downside is I'm not a fan of using octave/matlab--really wish this could be rebuilt using python for all the exercises. I've probably spent 60% of my time devoted to this course on getting that setup working and wrestling with telling the computer to do what I want in an unpopular language--at least, unpopular out in the world outside of academia.
By Sha L
•Apr 20, 2017
it's really hard course for me but after completing and see the certificate I feel so good about it. Yesterday someone asked a question regarding conditional independence. I remember before I took the course I've spent quite some time understanding it, just like him. But yesterday I didn't event think about it and gave him the right answer using "active trail" and "D-separation" concept. That's how powerful this course can be.
I didn't work on the honor track though because I'm currently short of time. But I think I will come back and taking the other 2 courses in this series.
By Ofelia P R P
•Dec 11, 2017
Curso muy completo que da conocimiento realmente avanzado sobre modelos gráficos probabilísticos. Aviso, la especialización es complicada para los que no somos expertos del tema!
By llv23
•Jul 19, 2017
Very good and excellent course and assignment
By 王文君
•May 21, 2017
Awesome class, the content is not too easy as most online courses. Still the instructor states the concepts clearly and the assignments aligns very well with the content to help me deepen my understanding of the concepts. The assignments are meaningful and challenging, finishing them gave me a great sense of achievement!!
It would be better if the examples in the classes could incorporate some industry applications.
By Phan T B
•Dec 02, 2016
very good!
By Ziheng
•Nov 14, 2016
Very informative course, and incredibly useful in research
By Elvis S
•Oct 29, 2016
Great course, looking forward for the following parts. Took it straight after Andrew Ng's one.
By Hao G
•Nov 01, 2016
Awesome course! I feel like bayesian method is also very useful for inference in daily life.
By Mohammd K D
•Apr 03, 2017
One of the best courses which i visited.
The explanation was so simple and there were many examples which were so helpful for me
By Shengliang
•May 29, 2017
excellent explanations! Thanks professor!
By George S
•Jun 18, 2017
Excellent material presentation