Improve the accuracy and reliability of your machine learning models by mastering ensemble techniques. In this intermediate-level course, you’ll learn why combining multiple models can outperform any single algorithm and how to design, select, and apply the right ensemble approach for different tasks. You’ll work through three core ensemble methods—bagging, boosting, and random forests—using Java in a Jupyter Notebook environment. Starting with the fundamentals of decision trees, you’ll progress from theory to practice, exploring bootstrap sampling, hard/soft voting, and the bias–variance trade-offs that influence ensemble performance. Each lesson combines focused videos, scenario-based discussions, AI-graded labs, and a capstone project, guiding you to build and evaluate ensembles on real datasets.

Improve Accuracy with ML Ensemble Methods

Improve Accuracy with ML Ensemble Methods
This course is part of Level Up: Java-Powered Machine Learning Specialization


Instructors: Reza Moradinezhad
Access provided by Interbank
Recommended experience
What you'll learn
Explain the core principles of ensemble learning and describe when and why combining diverse models improves predictive accuracy.
Implement bagging and boosting algorithms in Java within a Jupyter Notebook, tuning key parameters for optimal performance.
Build, tune, and evaluate random forest models for classification and regression, interpret features, and compare results with ensemble methods.
Skills you'll gain
Details to know

Add to your LinkedIn profile
December 2025
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There are 3 modules in this course
This module explains the core idea behind ensemble learning—combining multiple models to achieve higher predictive accuracy and stability than any single model. Learners explore how ensembles reduce bias and variance, review real-world use cases, and implement voting classifiers to see the performance gains firsthand.
What's included
4 videos2 readings1 peer review
This module teaches how to increase model accuracy by reducing variance with bagging and reducing bias with boosting. Learners practice bootstrap sampling, implement bagging in Java using Jupyter, and build a boosting model including AdaBoost to see how sequential learning corrects errors.
What's included
3 videos1 reading1 peer review
This module covers decision tree fundamentals and shows how random forests combine many trees through feature bagging and averaging to create powerful, stable predictors. Learners build, tune, and evaluate random forest models in Java, interpreting feature importance and comparing results to single-tree models.
What's included
4 videos1 reading1 assignment2 peer reviews
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Offered by
Why people choose Coursera for their career

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Explore more from Data Science
¹ Some assignments in this course are AI-graded. For these assignments, your data will be used in accordance with Coursera's Privacy Notice.



