Coursera

ML Production Systems Specialization

Coursera

ML Production Systems Specialization

Build Production-Ready ML Systems. Deploy, optimize, and scale machine learning models for real-world production environments.

Hurix Digital
ansrsource instructors

Instructors: Hurix Digital

Access provided by AO Pay

Get in-depth knowledge of a subject
Intermediate level

Recommended experience

4 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Get in-depth knowledge of a subject
Intermediate level

Recommended experience

4 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Containerize, deploy, and orchestrate ML models using Docker and Kubernetes for scalable production environments.

  • Build automated ML pipelines with CI/CD integration, systematic hyperparameter tuning, and test-driven development practices.

  • Optimize inference performance and manage ML codebases using Git workflows, resource scaling, and monitoring strategies.

Details to know

Shareable certificate

Add to your LinkedIn profile

Taught in English
Recently updated!

February 2026

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

Advance your subject-matter expertise

  • Learn in-demand skills from university and industry experts
  • Master a subject or tool with hands-on projects
  • Develop a deep understanding of key concepts
  • Earn a career certificate from Coursera

Specialization - 4 course series

What you'll learn

Apply Test-Driven ML Code

Apply Test-Driven ML Code

Course 2 1 hour

What you'll learn

  • Test-driven development creates a safety net that enables confident refactoring and continuous improvement of ML codebases for reliable systems.

  • Modular design principles applied to ML components (data loaders, training loops) dramatically improve code reusability and team collaboration.

  • Production-quality ML code requires the same software engineering rigor as traditional development, including comprehensive testing and CI/CD.

  • Investing in code quality upfront prevents technical debt that can derail ML projects during scaling and deployment phases of development.

Skills you'll gain

Category: CI/CD
Category: Test Driven Development (TDD)
Category: Python Programming
Category: Software Engineering
Category: Model Deployment
Category: Maintainability
Category: Tensorflow
Category: Testability
Category: Software Testing
Category: MLOps (Machine Learning Operations)
Category: Unit Testing
Category: Machine Learning Methods

What you'll learn

  • Effective K8s resource management needs continuous monitoring and proactive scaling threshold adjustments based on usage patterns.

  • Optimal utilization balances performance and cost, targeting 70-80% usage to handle spikes without waste.

  • Automated scaling must consider app startup times and traffic patterns to prevent over-provisioning and performance issues.

  • Resource requests/limits ensure predictable performance while preventing resource starvation across workloads.

What you'll learn

  • Performance optimization needs systematic profiling and targeted fixes across pipeline stages, from data prep to model execution.

  • Effective ML workflows depend on branching strategies and CI/CD practices aligned with team size, release pace, and deployment needs.

  • Production ML systems balance model accuracy with inference speed through techniques like quantization and pruning.

  • Sustainable ML codebases integrate version control with automated testing and deployment pipelines for quality and velocity.

Skills you'll gain

Category: CI/CD
Category: Version Control
Category: Git (Version Control System)
Category: Release Management
Category: Continuous Delivery
Category: Performance Tuning
Category: Model Evaluation
Category: Performance Testing
Category: MLOps (Machine Learning Operations)
Category: Software Development Methodologies
Category: Continuous Deployment
Category: PyTorch (Machine Learning Library)
Category: Performance Improvement
Category: Software Versioning
Category: Model Deployment
Category: Continuous Integration

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Instructors

Hurix Digital
Coursera
251 Courses 13,391 learners

Offered by

Coursera

Why people choose Coursera for their career

Felipe M.

Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."

Jennifer J.

Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."

Larry W.

Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."

Chaitanya A.

"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."