This course guides you through the process of transforming raw financial data into a clean, trustworthy dataset using Python and pandas. You’ll begin by exploring how to load data into a notebook environment and conduct quick inspections to identify structural issues, formatting inconsistencies, unusual numeric patterns, and missing values. Building on these observations, you’ll apply essential cleaning techniques used by analysts every day—fixing data types, standardizing text categories, resolving or documenting missingness, and removing duplicates. Through guided walkthroughs, hands-on practice, and interactive reflection, you’ll develop a repeatable workflow you can apply to budgeting, forecasting, reporting, or any analysis that relies on sound financial information. By the end of the course, you’ll confidently prepare analysis-ready datasets, make informed cleaning decisions, and communicate your process clearly to colleagues and stakeholders.

Data Cleaning with Python for Finance

Data Cleaning with Python for Finance
This course is part of Quantitative Finance & Risk Modeling Specialization

Instructor: ansrsource instructors
Access provided by Paidy
Recommended experience
Skills you'll gain
Details to know

Add to your LinkedIn profile
January 2026
See how employees at top companies are mastering in-demand skills

Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

There is 1 module in this course
This course guides you through the process of transforming raw financial data into a clean, trustworthy dataset using Python and pandas. You’ll begin by exploring how to load data into a notebook environment and conduct quick inspections to identify structural issues, formatting inconsistencies, unusual numeric patterns, and missing values. Building on these observations, you’ll apply essential cleaning techniques used by analysts every day—fixing data types, standardizing text categories, resolving or documenting missingness, and removing duplicates. Through guided walkthroughs, hands-on practice, and interactive reflection, you’ll develop a repeatable workflow you can apply to budgeting, forecasting, reporting, or any analysis that relies on sound financial information. By the end of the course, you’ll confidently prepare analysis-ready datasets, make informed cleaning decisions, and communicate your process clearly to colleagues and stakeholders.
What's included
6 videos2 readings3 assignments
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.
Instructor

Offered by
Why people choose Coursera for their career

Felipe M.

Jennifer J.

Larry W.

Chaitanya A.
Explore more from Data Science

Google

Corporate Finance Institute

University of Illinois Urbana-Champaign
¹ Some assignments in this course are AI-graded. For these assignments, your data will be used in accordance with Coursera's Privacy Notice.


