This course covers the essential information that every serious programmer needs to know about algorithms and data structures, with emphasis on applications and scientific performance analysis of Java implementations. Part I covers elementary data structures, sorting, and searching algorithms. Part II focuses on graph- and string-processing algorithms.
(1,988 Bewertungen)
Kompetenzen, die Sie erwerben
- Kategorie: Graphs
- Kategorie: Data Structure
- Kategorie: Algorithms
- Kategorie: Data Compression
Wichtige Details
13 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.
In diesem Kurs gibt es 14 Module
Welcome to Algorithms, Part II.
Das ist alles enthalten
1 Video2 Lektüren
We define an undirected graph API and consider the adjacency-matrix and adjacency-lists representations. We introduce two classic algorithms for searching a graph—depth-first search and breadth-first search. We also consider the problem of computing connected components and conclude with related problems and applications.
Das ist alles enthalten
6 Videos2 Lektüren1 Aufgabe
In this lecture we study directed graphs. We begin with depth-first search and breadth-first search in digraphs and describe applications ranging from garbage collection to web crawling. Next, we introduce a depth-first search based algorithm for computing the topological order of an acyclic digraph. Finally, we implement the Kosaraju−Sharir algorithm for computing the strong components of a digraph.
Das ist alles enthalten
5 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe
In this lecture we study the minimum spanning tree problem. We begin by considering a generic greedy algorithm for the problem. Next, we consider and implement two classic algorithm for the problem—Kruskal's algorithm and Prim's algorithm. We conclude with some applications and open problems.
Das ist alles enthalten
6 Videos2 Lektüren1 Aufgabe
In this lecture we study shortest-paths problems. We begin by analyzing some basic properties of shortest paths and a generic algorithm for the problem. We introduce and analyze Dijkstra's algorithm for shortest-paths problems with nonnegative weights. Next, we consider an even faster algorithm for DAGs, which works even if the weights are negative. We conclude with the Bellman−Ford−Moore algorithm for edge-weighted digraphs with no negative cycles. We also consider applications ranging from content-aware fill to arbitrage.
Das ist alles enthalten
5 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe
In this lecture we introduce the maximum flow and minimum cut problems. We begin with the Ford−Fulkerson algorithm. To analyze its correctness, we establish the maxflow−mincut theorem. Next, we consider an efficient implementation of the Ford−Fulkerson algorithm, using the shortest augmenting path rule. Finally, we consider applications, including bipartite matching and baseball elimination.
Das ist alles enthalten
6 Videos2 Lektüren1 Aufgabe1 Programmieraufgabe
In this lecture we consider specialized sorting algorithms for strings and related objects. We begin with a subroutine to sort integers in a small range. We then consider two classic radix sorting algorithms—LSD and MSD radix sorts. Next, we consider an especially efficient variant, which is a hybrid of MSD radix sort and quicksort known as 3-way radix quicksort. We conclude with suffix sorting and related applications.
Das ist alles enthalten
6 Videos1 Lektüre1 Aufgabe
In this lecture we consider specialized algorithms for symbol tables with string keys. Our goal is a data structure that is as fast as hashing and even more flexible than binary search trees. We begin with multiway tries; next we consider ternary search tries. Finally, we consider character-based operations, including prefix match and longest prefix, and related applications.
Das ist alles enthalten
3 Videos2 Lektüren1 Aufgabe
In this lecture we consider algorithms for searching for a substring in a piece of text. We begin with a brute-force algorithm, whose running time is quadratic in the worst case. Next, we consider the ingenious Knuth−Morris−Pratt algorithm whose running time is guaranteed to be linear in the worst case. Then, we introduce the Boyer−Moore algorithm, whose running time is sublinear on typical inputs. Finally, we consider the Rabin−Karp fingerprint algorithm, which uses hashing in a clever way to solve the substring search and related problems.
Das ist alles enthalten
5 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe
A regular expression is a method for specifying a set of strings. Our topic for this lecture is the famous grep algorithm that determines whether a given text contains any substring from the set. We examine an efficient implementation that makes use of our digraph reachability implementation from Week 1.
Das ist alles enthalten
5 Videos2 Lektüren1 Aufgabe
We study and implement several classic data compression schemes, including run-length coding, Huffman compression, and LZW compression. We develop efficient implementations from first principles using a Java library for manipulating binary data that we developed for this purpose, based on priority queue and symbol table implementations from earlier lectures.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe1 Programmieraufgabe
Our lectures this week are centered on the idea of problem-solving models like maxflow and shortest path, where a new problem can be formulated as an instance of one of those problems, and then solved with a classic and efficient algorithm. To complete the course, we describe the classic unsolved problem from theoretical computer science that is centered on the concept of algorithm efficiency and guides us in the search for efficient solutions to difficult problems.
Das ist alles enthalten
4 Videos2 Lektüren1 Aufgabe
The quintessential problem-solving model is known as linear programming, and the simplex method for solving it is one of the most widely used algorithms. In this lecture, we given an overview of this central topic in operations research and describe its relationship to algorithms that we have considered.
Das ist alles enthalten
4 Videos1 Lektüre1 Aufgabe
Is there a universal problem-solving model to which all problems that we would like to solve reduce and for which we know an efficient algorithm? You may be surprised to learn that we do no know the answer to this question. In this lecture we introduce the complexity classes P, NP, and NP-complete, pose the famous P = NP question, and consider implications in the context of algorithms that we have treated in this course.
Das ist alles enthalten
6 Videos1 Lektüre1 Aufgabe
Dozenten
Empfohlen, wenn Sie sich für Algorithms interessieren
Princeton University
Stanford University
Princeton University
Warum entscheiden sich Menschen für Coursera für ihre Karriere?
Bewertungen von Lernenden
Zeigt 3 von 1988
1.988 Bewertungen
- 5 stars
93,67 %
- 4 stars
5,11 %
- 3 stars
0,50 %
- 2 stars
0,25 %
- 1 star
0,45 %
Geprüft am 16. Apr. 2019
Geprüft am 29. Aug. 2020
Geprüft am 7. Feb. 2020
Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu über 7.000 erstklassigen Kursen, praktischen Projekten und Zertifikatsprogrammen, die Sie auf den Beruf vorbereiten – alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Once you enroll, you’ll have access to all videos and programming assignments.
No. All features of this course are available for free.
No. As per Princeton University policy, no certificates, credentials, or reports are awarded in connection with this course.