The field of natural language processing (NLP) aims at getting computers to perform useful and interesting tasks with human language. This course introduces students to the 3 pillars underlying modern NLP: probabilistic language models, simple neural networks with a focus on gradient based learning, and vector-based meaning representations in the form of word embeddings. At the end of the course, students will be able to implement and analyze probabilistic language models based on N-grams, text classifiers using logistic regression and gradient-based learning, and vector-based approaches to word meaning and text classification.

Erwerben Sie mit Coursera Plus für 199 $ (regulär 399 $) das nächste Level. Jetzt sparen.

Fundamentals of Natural Language Processing

Dozent: James Martin
1.996 bereits angemeldet
Bei enthalten
(11 Bewertungen)
Empfohlene Erfahrung
Was Sie lernen werden
Analyze corpora to develop effective lexicons using subword tokenization.
Develop language models that can assign probabilities to texts.
Design, implement, and evaluate the effectiveness of text classifiers using gradient-based learning techniques.
Design, implement and evaluate unsupervised methods for learning word embeddings.
Kompetenzen, die Sie erwerben
- Kategorie: Natural Language Processing
- Kategorie: Machine Learning Methods
- Kategorie: Artificial Intelligence and Machine Learning (AI/ML)
- Kategorie: Probability Distribution
- Kategorie: Deep Learning
- Kategorie: Logistic Regression
- Kategorie: Embeddings
- Kategorie: Statistical Modeling
- Kategorie: Linear Algebra
- Kategorie: Unstructured Data
- Kategorie: Model Evaluation
- Kategorie: Text Mining
- Kategorie: Classification Algorithms
- Kategorie: Algorithms
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
5 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 4 Module
This first week of Fundamentals of Natural Language Processing introduces the fundamental concepts of natural language processing (NLP), focusing on how computers process and analyze human language. You will explore key linguistic structures, including words and morphology, and learn essential techniques for text normalization and tokenization.
Das ist alles enthalten
5 Videos7 Lektüren2 Aufgaben
This week explores foundational language modeling techniques, focusing on n-gram models and their role in statistical Natural Language Processing. You will learn how n-gram language models are constructed, smoothed, and evaluated for effectiveness.
Das ist alles enthalten
4 Videos4 Lektüren1 Aufgabe1 Programmieraufgabe
This week introduces text classification and explores logistic regression as a powerful classification technique. You will learn how logistic regression models work, including key mathematical concepts such as the logit function, gradients, and stochastic gradient descent. The week also covers evaluation metrics for assessing classifier performance.
Das ist alles enthalten
6 Videos3 Lektüren1 Aufgabe1 Programmieraufgabe
This final week explores how words can be represented as vectors in a high-dimensional space, allowing computational models to capture semantic relationships between words. You will learn about both sparse and dense vector representations, including TF-IDF, Pointwise Mutual Information (PMI), Latent Semantic Analysis (LSA), and Word2Vec. The module also covers techniques for evaluating and applying word embeddings.
Das ist alles enthalten
7 Videos4 Lektüren1 Aufgabe1 Programmieraufgabe
Auf einen Abschluss hinarbeiten
Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von University of Colorado Boulderangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, können Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte können mit Ihnen übertragen werden.¹
Dozent

Mehr von Algorithms entdecken

University of Colorado Boulder
Status: Kostenloser Testzeitraum
Status: Kostenloser TestzeitraumUniversity of Colorado System
Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen für Coursera für ihre Karriere?




Häufig gestellte Fragen
Learners should be proficient in Python programming including the use of packages such as numpy, scikit-learn and pandas. Students should be proficient in data structures and basic topics in algorithm design, such as sorting and searching, dynamic programming, and algorithm analysis. Students should also have basic familiarity with introductory concepts from calculus, discrete probability, and linear algebra.
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
Weitere Fragen
Finanzielle Unterstützung verfügbar,




