This course takes a step-by-step approach to the process of building robust models to predict real-world outcomes and uncover valuable insights from your data. You’ll start with a solid foundation in probability and statistical distributions, learning how to estimate parameters and fit models using industry-standard libraries such as SciPy and NumPy. You'll dive into the theory and practice of regression analysis, learning about modeling correlations and interpreting coefficients for actionable business intelligence. Beyond model building, you’ll gain critical skills in evaluating model performance, troubleshooting common pitfalls, and understanding the nuanced differences between statistics, modeling, and machine learning. By the end of the course, you’ll confidently leverage Scikit-learn to implement predictive algorithms, distinguish between inference and prediction, and apply your knowledge to solve complex, real-world problems.

Entdecken Sie neue Fähigkeiten mit $120 Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Data Science Fundamentals Part 2: Unit 3
Dieser Kurs ist Teil von Spezialisierung für Data Science Fundamentals, Part 2

Dozent: Pearson
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Build and evaluate statistical models to predict outcomes using Python libraries such as SciPy, NumPy, and Scikit-learn.
Understand and apply the fundamentals of probability, statistical distributions, and regression analysis.
Identify and overcome common challenges in model fitting and performance evaluation.
Distinguish between statistical inference and prediction, and leverage machine learning algorithms for real-world applications.
Kompetenzen, die Sie erwerben
- Kategorie: Regression Analysis
- Kategorie: Statistical Analysis
- Kategorie: Data Analysis
- Kategorie: Estimation
- Kategorie: Scikit Learn (Machine Learning Library)
- Kategorie: Statistical Inference
- Kategorie: Machine Learning
- Kategorie: Probability & Statistics
- Kategorie: Statistical Modeling
- Kategorie: Business Analytics
- Kategorie: Predictive Modeling
- Kategorie: Performance Metric
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
August 2025
2 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 1 Modul
This module introduces the fundamentals of statistical modeling and machine learning using Python. You’ll learn to analyze Airbnb listing data, starting with probability and statistical distributions, then progress to parameter estimation and regression analysis. The module covers building and evaluating predictive models, understanding model performance, and overcoming common challenges. You’ll also explore the distinctions between statistics, modeling, and machine learning, and gain hands-on experience with Scikit-learn to make predictions. By the end, you’ll know how to create, interpret, and assess statistical models for real-world data analysis and prediction tasks.
Das ist alles enthalten
24 Videos2 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
University of California, Irvine
- Status: Vorschau
The University of Chicago
- Status: Kostenloser Testzeitraum
Edureka
- Status: Kostenloser Testzeitraum
Alberta Machine Intelligence Institute
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Weitere Fragen
Finanzielle Unterstützung verfügbar,