Welcome to the ""AI Infrastructure: Networking Techniques"" course. While AI Hypercomputer is renowned for its massive computational power using GPUs and TPUs, the secret to unlocking its full potential lies within the network. High-performance computing and large-scale model training demand incredibly fast, low-latency connections to continuously feed processors with data.

Profitez d'une croissance illimitée avec un an de Coursera Plus pour 199 $ (régulièrement 399 $). Économisez maintenant.

Compétences que vous acquerrez
- Catégorie : Distributed Computing
- Catégorie : Cloud Infrastructure
- Catégorie : Virtual Networking
- Catégorie : Google Cloud Platform
- Catégorie : Identity and Access Management
- Catégorie : Network Performance Management
- Catégorie : Network Architecture
- Catégorie : Computer Networking
- Catégorie : Network Security
- Catégorie : Data Import/Export
- Catégorie : Generative AI
- Catégorie : Network Monitoring
- Catégorie : General Networking
- Catégorie : Network Protocols
Détails à connaître

Ajouter à votre profil LinkedIn
décembre 2025
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 6 modules dans ce cours
This module offers an overview of the course and outlines the learning objectives.
Inclus
1 plugin
This module details the specialized networking requirements for AI workloads compared to traditional web applications. It covers the specific bandwidth and latency demands of each pipeline stage—from ingestion to inference—and analyzes the "rail-aligned" network architectures of Google Cloud's A3 and A4 GPU machine types designed to maximize "Goodput."
Inclus
1 devoir3 plugins
This module details strategies for efficiently moving massive datasets into the cloud. It covers the use of the Cross-Cloud Network and Cloud Interconnect to establish high-bandwidth pipelines, and outlines configuration best practices—such as enabling Jumbo Frames (MTU)—to reduce protocol overhead and optimize throughput.
Inclus
1 devoir2 plugins
This module details the critical role of low-latency networking in distributed model training. It covers the necessity of Remote Direct Memory Access (RDMA) for gradient synchronization, the benefits of Google's Titanium offload architecture in freeing up CPU resources, and the topology choices required to scale clusters without bottlenecks.
Inclus
1 devoir3 plugins
This module details the networking challenges specific to Generative AI inference, such as bursty traffic and long-lived connections. It covers optimizing Time-to-First-Token using the GKE Inference Gateway and "Queue Depth" routing, while also addressing best practices for network reliability and Identity and Access Management (IAM).
Inclus
1 devoir5 plugins
Student PDF links to all modules
Inclus
1 lecture
Instructeur

Offert par
En savoir plus sur Software Development
Statut : Essai gratuitGoogle Cloud
Statut : Essai gratuit
Google Cloud
Statut : Essai gratuitGoogle Cloud
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?




Foire Aux Questions
Yes, you can preview the first video and view the syllabus before you enroll. You must purchase the course to access content not included in the preview.
If you decide to enroll in the course before the session start date, you will have access to all of the lecture videos and readings for the course. You’ll be able to submit assignments once the session starts.
Once you enroll and your session begins, you will have access to all videos and other resources, including reading items and the course discussion forum. You’ll be able to view and submit practice assessments, and complete required graded assignments to earn a grade and a Course Certificate.
Plus de questions
Aide financière disponible,




