In this course, you’ll discover how to call functions to perform useful actions on your data. You’ll also learn how to write conditional statements to tell the computer how to make decisions based on your instructions. And you’ll practice writing clean code that can be easily understood and reused by other data professionals.



Functions and Conditional Statements
Ce cours fait partie de Spécialisation Google Data Analysis with Python

Instructeur : Google Career Certificates
Enseignant de premier plan
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Identify best practices for writing clean code such as reusability, modularity, and refactoring.
Use comparators and logical operators to compare values.
Explain the purpose and logic of conditional statements such as if, else, and elif
Describe how to define Python functions using the def and return keywords
Compétences que vous acquerrez
- Catégorie : Computational Logic
- Catégorie : Software Design
- Catégorie : Algorithms
- Catégorie : Computer Programming
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
3 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 3 modules dans ce cours
In this module, you will discover how to call functions to perform useful actions on your data.
Inclus
5 vidéos1 lecture1 devoir3 laboratoires non notés
In this module, you will learn how to write conditional statements in order to direct the computer to make decisions based on the given instructions.
Inclus
2 vidéos2 lectures1 devoir2 laboratoires non notés
Review everything you’ve learned and take the final assessment.
Inclus
1 lecture1 devoir
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
- Statut : Essai gratuit
University of California, Irvine
- Statut : Essai gratuit
Scrimba
- Statut : Prévisualisation
University of Leeds
- Statut : Essai gratuit
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science is part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
Large volumes of data — and the technology needed to manage and analyze it — are becoming increasingly accessible. Because of this, there has been a surge in career opportunities for people who can tell stories using data, such as senior data analysts and data scientists. These professionals collect, analyze, and interpret large amounts of data within a variety of different organizations. Their responsibilities require advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning.
Plus de questions
Aide financière disponible,