In this course, you'll discover the main features and benefits of the Python programming language, and how Python can help power your data analysis. Python is an object-oriented programming language based on objects that contain data and useful code. You’ll become familiar with the core concepts of object-oriented programming: object, class, method, and attribute. You’ll learn about Jupyter Notebooks, an interactive environment for coding and data work. You’ll investigate how to use variables and data types to store and organize your data; and, you'll begin practicing important coding skills.



Hello, Python!
Ce cours fait partie de Spécialisation Google Data Analysis with Python

Instructeur : Google Career Certificates
Enseignant de premier plan
Inclus avec
Expérience recommandée
Ce que vous apprendrez
Explain how Python is used by data professionals
Explore basic Python building blocks, including syntax and semantics
Use Python's inherent capabilities to explore data effectively with built-in functions and keywords
Recognize the uses and benefits of Jupyter Notebook for data work and as a Python environment
Compétences que vous acquerrez
- Catégorie : Computer Programming
- Catégorie : Package and Software Management
- Catégorie : Data Science
- Catégorie : Mathematical Software
Détails à connaître

Ajouter à votre profil LinkedIn
septembre 2025
4 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 4 modules dans ce cours
Discover the main features and benefits of the Python programming language, and how Python can help power your data analysis. Python is an object-oriented programming language based on objects that contain data and useful code.
Inclus
2 vidéos1 lecture1 devoir
Become familiar with the core concepts of object-oriented programming: object, class, method, and attribute. Learn about Jupyter Notebooks, an interactive environment for coding and data work.
Inclus
3 vidéos3 lectures1 devoir1 laboratoire non noté
Investigate how to use variables and data types to store and organize your data; and begin practicing important coding skills.
Inclus
3 vidéos1 lecture1 devoir2 laboratoires non notés
Review everything you’ve learned and take the final assessment.
Inclus
1 lecture1 devoir
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
- Statut : Essai gratuit
- Statut : Essai gratuit
Scrimba
- Statut : Prévisualisation
University of Leeds
- Statut : Essai gratuit
Scrimba
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Organizations of all types and sizes have business processes that generate massive volumes of data. Every moment, all sorts of information gets created by computers, the internet, phones, texts, streaming video, photographs, sensors, and much more. In the global digital landscape, data is increasingly imprecise, chaotic, and unstructured. As the speed and variety of data increases exponentially, organizations are struggling to keep pace.
Data science is part of a field of study that uses raw data to create new ways of modeling and understanding the unknown. To gain insights, businesses rely on data professionals to acquire, organize, and interpret data, which helps inform internal projects and processes. Data scientists rely on a combination of critical skills, including statistics, scientific methods, data analysis, and artificial intelligence.
We highly recommend taking the courses in the order presented, as the content builds on information from earlier courses. This is the first course in a series of six courses that make up the Google Data Analysis with Python Specialization.
A data professional is a term used to describe any individual who works with data and/or has data skills. At a minimum, a data professional is capable of exploring, cleaning, selecting, analyzing, and visualizing data. They may also be comfortable with writing code and have some familiarity with the techniques used by statisticians and machine learning engineers, including building models, developing algorithmic thinking, and building machine learning models.
Data professionals are responsible for collecting, analyzing, and interpreting large amounts of data within a variety of different organizations. The role of a data professional is defined differently across companies. Generally speaking, data professionals possess technical and strategic capabilities that require more advanced analytical skills such as data manipulation, experimental design, predictive modeling, and machine learning. They perform a variety of tasks related to gathering, structuring, interpreting, monitoring, and reporting data in accessible formats, enabling stakeholders to understand and use data effectively. Ultimately, the work of data professionals helps organizations make informed, ethical decisions.
Plus de questions
Aide financière disponible,