Rice University

Concurrent Programming in Java

Vivek Sarkar

Instructor: Vivek Sarkar

25,493 already enrolled

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
4.5

(659 reviews)

Intermediate level
Some related experience required
Flexible schedule
Approx. 18 hours
Learn at your own pace
94%
Most learners liked this course
Gain insight into a topic and learn the fundamentals.
4.5

(659 reviews)

Intermediate level
Some related experience required
Flexible schedule
Approx. 18 hours
Learn at your own pace
94%
Most learners liked this course

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

4 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Parallel, Concurrent, and Distributed Programming in Java Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 7 modules in this course

Welcome to Concurrent Programming in Java! This course is designed as a three-part series and covers a theme or body of knowledge through various video lectures, demonstrations, and coding projects.

What's included

1 video5 readings1 programming assignment1 discussion prompt

In this module, we will learn about threads and locks, which have served as primitive building blocks for concurrent programming for over five decades. All computing platforms today include some form of support for threads and locks, and make them available for use by developers in a wide range of programming languages. We will learn how threads can be created, joined, and synchronized using structured (e.g., synchronized statements/methods) and unstructured (e.g., java.util.concurrent libraries) locks in Java. We will also learn about new classes of bugs that can arise when concurrent programs need to access shared resources. These bugs are referred to as violations of liveness/progress guarantees, and include deadlock, livelock, and starvation. We will conclude this module by studying different solutions to the classical "Dining Philosophers" problem, and use these solutions to illustrate instances of deadlock, livelock and starvation.

What's included

6 videos6 readings1 assignment1 programming assignment

In this module, we will learn different approaches to coordinating accesses to shared resources without encountering the deadlock or livelock bugs studied earlier. Critical/isolated sections are higher-level concurrent programming constructs (relative to locks) that simplify the implementation of mutual exclusion by guaranteeing the absence of deadlocks and livelocks. Object-based isolation relaxes the constraints imposed by critical sections by allowing mutual exclusion to be specified on a per-object basis, as illustrated in the Spanning Tree example. Java's atomic variables represent an important, but restricted, case of object-based isolation that is implemented efficiently on all hardware platforms. Finally, we will learn how object-based isolation can be further relaxed with read/write access modes.

What's included

6 videos6 readings1 assignment1 programming assignment

Join Professor Vivek Sarkar as he talks with Software Engineer, Dr. Shams Imam, at their downtown Houston, Texas office about threads, locks, deadlocks, high-level and low-level constructs, and the importance of concurrent programming.

What's included

2 videos1 reading

In this module, we will learn another high-level approach to concurrent programming called the "Actor" model. A major difference between the Actor model and the Isolated Sections model is that there are no data races possible in the Actor model because it does not allow for any form of shared variables. However, as in all concurrent programming models, higher-level forms of nondeterminism are still possible in the Actor model due to an inherent asynchrony in the order in which messages may be delivered. We will study multiple examples of concurrency using the Actor model, including the classical Sieve of Eratosthenes algorithm to generate prime numbers, as well as producer-consumer patterns with both unbounded and bounded buffers.

What's included

6 videos6 readings1 assignment1 programming assignment

In this module, we will study Concurrent Data Structures, which form an essential software layer in all multithreaded programming systems. First, we will learn about Optimistic Concurrency, an important multithreaded pattern in which two threads can "optimistically" make progress on their assigned work without worrying about mutual conflicts, and only checking for conflicts before "committing" the results of their work. We will then study the widely-used Concurrent Queue data structure. Even though the APIs for using concurrent queues are very simple, their implementations using the Optimistic Concurrency model can be complex and error-prone. To that end, we will also learn the formal notion of Linearizability to better understand correctness requirements for concurrent data structures. We will then study Concurrent Hash Maps, another widely-used concurrent data structure. Finally, we discuss a concurrent algorithm for finding a Minimum Spanning Tree of an undirected graph, an algorithm that relies on the use of Concurrent Data Structures under the covers.

What's included

6 videos7 readings1 assignment1 programming assignment

The next two videos will showcase the importance of learning about Parallel Programming and Distributed Programming in Java. Professor Vivek Sarkar will speak with industry professionals at Two Sigma about how the topics of our other two courses are utilized in the field.

What's included

2 videos1 reading

Instructor

Instructor ratings
4.7 (52 ratings)
Vivek Sarkar
Rice University
3 Courses63,639 learners

Offered by

Rice University

Recommended if you're interested in Software Development

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

Showing 3 of 659

4.5

659 reviews

  • 5 stars

    66.76%

  • 4 stars

    24.73%

  • 3 stars

    5.91%

  • 2 stars

    1.06%

  • 1 star

    1.51%

GA
5

Reviewed on Sep 19, 2020

FH
4

Reviewed on Nov 26, 2020

SM
5

Reviewed on Nov 11, 2017

New to Software Development? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions