Chevron Left
Back to Data Science in Real Life

Learner Reviews & Feedback for Data Science in Real Life by Johns Hopkins University

4.4
1,560 ratings
185 reviews

About the Course

Have you ever had the perfect data science experience? The data pull went perfectly. There were no merging errors or missing data. Hypotheses were clearly defined prior to analyses. Randomization was performed for the treatment of interest. The analytic plan was outlined prior to analysis and followed exactly. The conclusions were clear and actionable decisions were obvious. Has that every happened to you? Of course not. Data analysis in real life is messy. How does one manage a team facing real data analyses? In this one-week course, we contrast the ideal with what happens in real life. By contrasting the ideal, you will learn key concepts that will help you manage real life analyses. This is a focused course designed to rapidly get you up to speed on doing data science in real life. Our goal was to make this as convenient as possible for you without sacrificing any essential content. We've left the technical information aside so that you can focus on managing your team and moving it forward. After completing this course you will know how to: 1, Describe the “perfect” data science experience 2. Identify strengths and weaknesses in experimental designs 3. Describe possible pitfalls when pulling / assembling data and learn solutions for managing data pulls. 4. Challenge statistical modeling assumptions and drive feedback to data analysts 5. Describe common pitfalls in communicating data analyses 6. Get a glimpse into a day in the life of a data analysis manager. The course will be taught at a conceptual level for active managers of data scientists and statisticians. Some key concepts being discussed include: 1. Experimental design, randomization, A/B testing 2. Causal inference, counterfactuals, 3. Strategies for managing data quality. 4. Bias and confounding 5. Contrasting machine learning versus classical statistical inference Course promo: https://www.youtube.com/watch?v=9BIYmw5wnBI Course cover image by Jonathan Gross. Creative Commons BY-ND https://flic.kr/p/q1vudb...
Highlights
Statistics review
(44 Reviews)

Top reviews

SM

Aug 20, 2017

A very good and concise course that helps to understand the basics of the Data Science and its applications. The examples are very relevant and helps to understand the topic easily.

ES

Nov 12, 2017

Highly educational course on the realities of data analysis. Many good tips for your own analyses as well as for managing others responsible for coherent and accurate analyses.

Filter by:

151 - 175 of 184 Reviews for Data Science in Real Life

By Robert A

Feb 04, 2016

Brian, Jeff, and Roger: Thank you very much for all the data science courses, really great. I generally rate them 5 stars. But for this one, I'm giving 3 stars, not because the content is not good (it is; it provides good practical and experiential information), but rather because the material seems repetitive at times either within the same course or with topics in the other courses. Also, the sequencing and lectures seem sometime a bit disjointed.

May I humbly suggest an idea: Integrate the key points of this course relating to real-world examples and the sharing of real-world experiences into one of the other courses.

Thank you.

Robert Al-Jaar, PhD

robert.aljaar@rassociates.biz

By Gonzalo G A

Dec 16, 2016

It's sometimes difficult to follow professors beacuse they take for granted information about the examples they use that is not evident for the learners. They should take a minute to explain a little bit more what the examples consist of and what are the charts they show. As it happens when Brian Caffo explains the blocking adjustments part.

By Amal L C

Mar 16, 2017

It was quite hard with all the statistical jargon. Too much theory.

By David T

Nov 14, 2016

Some good tips, nothing terribly new for those who have had a course in statistics. Materials made easy to digest. The variety from the 3 instructors was nice. Missed opportunity: to combine the best aspects from each. The course notes were either excerpts from R.Peng's books /blogs (good) or automated transcripts (complete with typical AI typos... "wait" instead of "weight"). Some lectures were repetitive from one course to another. Slides with examples were useful, slides with clip-art and comic stips less so. Tries to be something for everyone. Would be better to aim either at former DS analysts aspiring to be managers or seasoned managers trying to better understand DS.

By Weihua W

Jan 19, 2016

Too short, too expensive.

By Matej K

May 01, 2018

Sometimes it was hard to understand what's going on.

By Cauri J

Jul 04, 2017

I found this course used a lot of jargon without explanation. It seems like the instructor understands the content so well that he assumes a level of knowledge from students that do not match the expectations of the rest of the content in this track. At the same time I found the content well presented.

By Chong K M

Mar 18, 2018

Very difficult and time consuming course which contains a lot of technical words and jargon. Not recommended for the average beginner.

By Ruben S

Aug 17, 2016

Brian tries to achieve too much in too little time. It addresses important issues and it gives a good overview, including some hidden gems (Machine Learning vs Stats, for example), but it feels mostly too rushed and superficial for my taste/expectations, and it fails to connect to my previous knowledge (and I have a PhD in Maths, although no strong Stats background), hence little added value for me when I cannot relate to what is being discussed.

By Daniel C d F

Dec 06, 2016

I missed several concepts to better understand some of the discussions and explanations. It was valid, but I think the statistics background should be better explored.

By Ioannis L

Apr 09, 2017

A bit less engaging than the other parts of the Executive Data Science course.

By Sean H

Nov 24, 2015

The video quality and content were good. Unfortunately, there were a lot of spelling errors and grammatical mistakes in the written portions.

By Manas B

May 11, 2016

Relevant materials, but lecture delivery is rather dry,

By Poon F

Jan 30, 2018

This class has more useful materials than previous ones.

By Christopher L

May 03, 2018

Would have liked a bit more examples and math in some cases. Others were fine.

By emilio z

Jun 06, 2017

Explanations in videos qere not very clear nor very well connecetd with the Quiz

By Yuvaraj B

Dec 26, 2017

Very Good Content

By Angelina

Apr 02, 2019

The material is too long and boring.

By Michail C

Jul 17, 2019

This course is an excellent effort to document the issues faced in real-life data science. However, the flow of the videos seems to be a bit confusing and some of the content is explained in a weird manner.

By Gilson F

Aug 02, 2019

Não gostei muito da didatica do instrutor e os slides não ajudam no entendimento

By Jason C

Nov 06, 2018

I found this course to be notably worse than all of the others in the series. There is very very little practical content provided within the lectures. Way too many summaries or over-views of what's to come next without really getting into the nuances of what is discussed as a course topic. Way too much repetition of the exact same content, there is even repetition of content in this course that was presented in another one of the courses in the series. Many of the examples are purely meant as a comedic aside rather than actually functioning to discuss the topic with depth. E.g. - talking about statistical modeling and putting up a picture of Ben Stiller from Zoolander - then keeping the picture up there for the entire explanation. There's literally a Nic Cage example provided for the confounding factor lecture only for the instructor to say directly after "This isn't actually the best example" - then proceeds to not explain why it was brought up aside from mentioning there's a spurious correlation. Way too much repetition of similar examples - showing photos of a muscular v. skinny Christian Bale. This pop-culturey reference isn't needed in the first place and doesn't need to be shown in triplicate. I don't mind repetition if there is additional nuance or content provided through them, but that isn't the case in this course. I find there is too much focus on side tangents, where the instructor seems to change thoughts mid-sentence but forgets to come back to the original idea. I think that every single video could be cut down by 25%, purely by being more concise, and should include more nuanced descriptions. I found it particularly odd that instrumental variables were noted as a rather clever technique, yet an explanation was intentionally avoided, however an example was still provided. Bringing up a topic, intentionally refusing to define it, then providing an example directly after just doesn't make sense. I think that more time needs to be spent refining the lectures so that they're designed to teach content. It has the feel of someone who's talking about a field to get people interested in it rather than a practical training course. Many key terms are very poorly defined with examples (on many cases the audience is referred to wikipedia for explanations) in which the basics are repetitively explained while the nuances are glossed over. There seems to be an odd theme where summaries and over-generalizations are far too frequent and yet the key terms and how they relate to examples are an afterthought. I don't think the summaries are necessary given the fact that users can literally re-watch every single video and there isn't enough total content to justify a summary in the first place. Additionally, this course also seems to deviate from the others in that there is an assumption that the student has a heavy amount of programming experience already built in (or that's my assumption since many of the term explanations aren't discussed too heavily). Prior lectures break down the basics more and indicate that potential managers should pursue the data specialization courses.

By Shafeeq S

Jan 08, 2019

Not that engaging content.Too much theoretical approach.

By Varun M

Sep 19, 2016

very boring videos.

By Jean-Gabriel P

Aug 10, 2017

OK content but delivery could be better. Also poor value for money (you pay 49$ for a course you can finish in a few days) versus other Coursera courses that get you much more bang for your buck.

By Hiteshwar G

Jan 05, 2018

The content and examples seem irrelevant.