e.g. This is primarily aimed at first- and second-year undergraduates interested in engineering or science, along with high school students and professionals with an interest in programmingGain the skills for building efficient and scalable data pipelines. Explore essential data engineering platforms (Hadoop, Spark, and Snowflake) as well as learn how to optimize and manage them. Delve into Databricks, a powerful platform for executing data analytics and machine learning tasks, while honing your Python data science skills with PySpark. Finally, discover the key concepts of MLflow, an open-source platform for managing the end-to-end machine learning lifecycle, and learn how to integrate it with Databricks.
Spark, Hadoop, and Snowflake for Data Engineering
This course is part of Applied Python Data Engineering Specialization
Instructors: Noah Gift
8,989 already enrolled
Included with
(42 reviews)
Recommended experience
What you'll learn
Create scalable data pipelines (Hadoop, Spark, Snowflake, Databricks) for efficient data handling.
Optimize data engineering with clustering and scaling to boost performance and resource use.
Build ML solutions (PySpark, MLFlow) on Databricks for seamless model development and deployment.
Implement DataOps and DevOps practices for continuous integration and deployment (CI/CD) of data-driven applications, including automating processes.
Details to know
Add to your LinkedIn profile
21 assignments
See how employees at top companies are mastering in-demand skills
Build your subject-matter expertise
- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 4 modules in this course
In this module, you will learn how to work with different data engineering platforms, such as Hadoop and Spark, and apply their concepts to real-world scenarios. First, you will explore the fundamentals of Hadoop to store and process big data. Next, you will delve into Spark concepts, distributed computing, deferred execution, and Spark SQL. By the end of the week, you will gain hands-on experience with PySpark DataFrames, DataFrame methods, and deferred execution strategies.
What's included
10 videos9 readings7 assignments2 discussion prompts2 ungraded labs
In this module, you will explore the Snowflake platform, gaining insights into its architecture and key concepts. Through hands-on practice in the Snowflake Web UI, you'll learn to create tables, manage warehouses, and use the Snowflake Python Connector to interact with tables. By the end of this week, you'll solidify your understanding of Snowflake's architecture and practical applications, emerging with the ability to effectively navigate and leverage the platform for data management and analysis.
What's included
8 videos5 readings6 assignments
In this module, you will practice the essential skills for seamlessly managing machine learning workflows using Databricks and MLFlow. First, you will create a Databricks workspace and configure a cluster, setting the stage for efficient data analysis. Next, you will load a sample dataset into the Databricks workspace using the power of PySpark, enabling data manipulation and exploration. Finally, you will install MLFlow either locally or within the Databricks environment, gaining the ability to orchestrate the entire machine learning lifecycle. By the end of this week, you will be able to craft, track, and manage machine learning experiments within Databricks, ensuring precision, reproducibility, and optimal decision-making throughout your data-driven journey.
What's included
16 videos7 readings4 assignments1 ungraded lab
In this module, you will explore the concepts of Kaizen, DevOps, and DataOps and how these methodologies synergistically contribute to efficient and seamless data engineering workflows. Through practical examples, you will learn how Kaizen's continuous improvement philosophy, DevOps' collaborative practices, and DataOps' focus on data quality and integration converge to enhance the development, deployment, and management of data engineering platforms. By the end of this week, you will have the knowledge and perspective needed to optimize data engineering processes and deliver scalable, reliable, and high-quality solutions.
What's included
21 videos6 readings4 assignments1 ungraded lab
Offered by
Recommended if you're interested in Machine Learning
Duke University
Fractal Analytics
University of Colorado Boulder
Universidad Nacional Autónoma de México
Why people choose Coursera for their career
Learner reviews
Showing 3 of 42
42 reviews
- 5 stars
52.38%
- 4 stars
19.04%
- 3 stars
11.90%
- 2 stars
4.76%
- 1 star
11.90%
New to Machine Learning? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.