Series temporales con Deep Learning (RNN, LSTM) y Prophet

Offered By
Coursera Project Network
In this Guided Project, you will:

Entrenar y optimizar una red neuronal recurrente (RNN y LSTM)

Predecir series temporales con Facebook' Prophet

Predecir datos futuros con modelos de series temporales

Clock2 horas
IntermediateIntermediate
CloudNo download needed
VideoSplit-screen video
Comment DotsSpanish
LaptopDesktop only

En este proyecto aplicado y práctico aprenderás a entrenar redes neuronales recurrentes (RNN y LSTM) y modelos de Prophet para predecir series temporales. Tanto las redes LSTM como Prophet son algunos de los modelos más avanzados para predecir valores futuros en base a series de tiempo. Por ello, te enseñaremos a como pre-procesar y preparar tus datos, a entrenar los modelos, a evaluarlos, a optimizarlos y a utilizarlos para predecir datos futuros. Al finalizar este curso habrás aprendido a entrenar tus propios modelos y a aplicarlos en tus propios proyectos.

Skills you will develop

Deep LearningProphetTime SeriesLong Short-Term Memory (ISTM)keras

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Introducción a las series temporales

  2. Fundamentos de Redes Neuronales Recurrentes (RNN y LSTM)

  3. Funciones básicas con Keras

  4. Pre-procesamiento de datos y entrenamiento del modelo LSTM

  5. Ejercicio práctico. Desarrollo de un modelo LSTM

  6. Evaluación del modelo y predicciones

  7. Ejercicio práctico. Evaluación del modelo y predicción

  8. Desarrollo de un modelo avanzado de LSTM

  9. Ejercicio práctico. Modelo avanzado de LSTM

  10. Predicción con nuevos datos y despliegue del modelo

  11. Ejercicio práctico. Evaluación y puesta en producción de la red LSTM

  12. Series temporales con Prophet

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Frequently asked questions

Frequently Asked Questions

More questions? Visit the Learner Help Center.