Chevron Left
Back to Reproducible Research

Learner Reviews & Feedback for Reproducible Research by Johns Hopkins University

4,167 ratings

About the Course

This course focuses on the concepts and tools behind reporting modern data analyses in a reproducible manner. Reproducible research is the idea that data analyses, and more generally, scientific claims, are published with their data and software code so that others may verify the findings and build upon them. The need for reproducibility is increasing dramatically as data analyses become more complex, involving larger datasets and more sophisticated computations. Reproducibility allows for people to focus on the actual content of a data analysis, rather than on superficial details reported in a written summary. In addition, reproducibility makes an analysis more useful to others because the data and code that actually conducted the analysis are available. This course will focus on literate statistical analysis tools which allow one to publish data analyses in a single document that allows others to easily execute the same analysis to obtain the same results....

Top reviews


Feb 12, 2016

My favorite course, at least it gives me an argument why scripted statistics is awesome and can be applied to a number of data related activities. Recycling chunks of code has proven useful to me.


Aug 19, 2020

A very important course that greatly improved my ability to communicate the findings of any sort of data analysis that I perform. This is a critical skill to acquire to "deliver the means."

Filter by:

376 - 400 of 586 Reviews for Reproducible Research

By Luis M M R

Mar 4, 2018

very good

By Veronica F V M

Aug 1, 2017

Muy bueno

By Ahmed M S K

Jun 20, 2017


By 刘博

Mar 2, 2017

good work

By Carlos R

Dec 26, 2016


By saroj r

May 14, 2016

i like it

By 杜冈桃

Oct 7, 2017


By Sanjay B

Oct 27, 2020


By Medha B

Oct 18, 2020


By Adán H

Nov 6, 2017


By zhao m

Nov 1, 2016


By Manoj K

Aug 31, 2016



Nov 13, 2020



Jul 17, 2020


By Rizwan M

Sep 5, 2019


By SriHari a

Apr 21, 2019


By Amit K R

Nov 27, 2017


By Jay B

Aug 24, 2017


By Yi-Yang L

Apr 10, 2017


By Oleksandr F

Nov 24, 2016


By 朱荣荣

Mar 11, 2016


By Meidani P

Dec 3, 2021


By Suriya

Feb 24, 2018


By Marat G

Mar 22, 2017


By Jeffrey P

Mar 15, 2016

By far the most time consuming, yet rewarding course in the data science specialization thus far. Literate Programing in general and R Markdown in particular are simple enough as concepts, but do take some time to grow accustomed to. However, I found the course to be a compelling argument for reproducibility that has application beyond just Data Science proper.

Although the technology is completely different, the concepts behind reproducibility really resonated with me and the work I do managing a division in Application Development. I'm constantly having to balance seemingly limitless demands, limited resources, and the difficulty of retaining staff in highly-competitive industry. Reproducibility becomes not just the basis for cross-training, product stabilization, and growth, but is a necessary ingredient of a team's survival.

This course not only cemented my own thoughts on the topic, but gave me some new ideas and tools for process improvement on the job.