Custom Prediction Routine on Google AI Platform

4.6
stars
417 ratings
Offered By
Coursera Project Network
12,671 already enrolled
In this Guided Project, you will:

Deploy a model with custom prediction routine on Google AI Platform.

Use a model deployed on Google AI Platform for inference.

Clock2 hours
IntermediateIntermediate
CloudNo download needed
VideoSplit-screen video
Comment DotsEnglish
LaptopDesktop only

Please note: You will need a Google Cloud Platform account to complete this course. Your GCP account will be charged as per your usage. Please make sure that you are able to access Google AI Platform within your GCP account. You should be familiar with python programming, and Google Cloud Platform before starting this hands on project. Please also ensure that you have access to the custom prediction routine feature in Google AI Platform. In this 2-hour long project-based course, you will learn how to deploy, and use a model on Google’s AI Platform. Normally, any model trained with the TensorFlow framework is quite easy to deploy, and you can simply upload a Saved Model on Google Storage, and create an AI Platform model with it. But, in practice, we may not always use TensorFlow. Fortunately, the AI Platform allows for custom prediction routines as well and that’s what we are going to focus on. Instead of converting a Keras model to a TensorFlow Saved Model, we will use the h5 file as is. Additionally, since we will be working with image data, we will use this opportunity to look at encoding and decoding of byte data into string for data transmission and then encoding of the received data in our custom prediction routine on the AI Platform before using it with our model. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

Deep Learningcustom prediction routinegoogle ai platformMachine Learningkeras

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Introduction

  2. Notebook Instance and Model Artifact

  3. Testing the Model

  4. Custom Prediction Class

  5. Preprocessing

  6. Postprocessing

  7. Setup Script

  8. Deploying the Model

  9. Predictions

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM CUSTOM PREDICTION ROUTINE ON GOOGLE AI PLATFORM

View all reviews

Frequently asked questions

Frequently Asked Questions

More questions? Visit the Learner Help Center.