Reinforcement Learning Specialization
Master the Concepts of Reinforcement Learning. Implement a complete RL solution and understand how to apply AI tools to solve real-world problems.
Offered By
What you will learn
Build a Reinforcement Learning system for sequential decision making.
Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradients, Dyna, and more).
Understand how to formalize your task as a Reinforcement Learning problem, and how to begin implementing a solution.
Understand how RL fits under the broader umbrella of machine learning, and how it complements deep learning, supervised and unsupervised learning
Skills you will gain
About this Specialization
Applied Learning Project
Through programming assignments and quizzes, students will:
Build a Reinforcement Learning system that knows how to make automated decisions.
Understand how RL relates to and fits under the broader umbrella of machine learning, deep learning, supervised and unsupervised learning.
Understand the space of RL algorithms (Temporal- Difference learning, Monte Carlo, Sarsa, Q-learning, Policy Gradient, Dyna, and more).
Understand how to formalize your task as a RL problem, and how to begin implementing a solution.
Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode
Probabilities & Expectations, basic linear algebra, basic calculus, Python 3.0 (at least 1 year), implementing algorithms from pseudocode
There are 4 Courses in this Specialization
Fundamentals of Reinforcement Learning
Reinforcement Learning is a subfield of Machine Learning, but is also a general purpose formalism for automated decision-making and AI. This course introduces you to statistical learning techniques where an agent explicitly takes actions and interacts with the world. Understanding the importance and challenges of learning agents that make decisions is of vital importance today, with more and more companies interested in interactive agents and intelligent decision-making.
Sample-based Learning Methods
In this course, you will learn about several algorithms that can learn near optimal policies based on trial and error interaction with the environment---learning from the agent’s own experience. Learning from actual experience is striking because it requires no prior knowledge of the environment’s dynamics, yet can still attain optimal behavior. We will cover intuitively simple but powerful Monte Carlo methods, and temporal difference learning methods including Q-learning. We will wrap up this course investigating how we can get the best of both worlds: algorithms that can combine model-based planning (similar to dynamic programming) and temporal difference updates to radically accelerate learning.
Prediction and Control with Function Approximation
In this course, you will learn how to solve problems with large, high-dimensional, and potentially infinite state spaces. You will see that estimating value functions can be cast as a supervised learning problem---function approximation---allowing you to build agents that carefully balance generalization and discrimination in order to maximize reward. We will begin this journey by investigating how our policy evaluation or prediction methods like Monte Carlo and TD can be extended to the function approximation setting. You will learn about feature construction techniques for RL, and representation learning via neural networks and backprop. We conclude this course with a deep-dive into policy gradient methods; a way to learn policies directly without learning a value function. In this course you will solve two continuous-state control tasks and investigate the benefits of policy gradient methods in a continuous-action environment.
A Complete Reinforcement Learning System (Capstone)
In this final course, you will put together your knowledge from Courses 1, 2 and 3 to implement a complete RL solution to a problem. This capstone will let you see how each component---problem formulation, algorithm selection, parameter selection and representation design---fits together into a complete solution, and how to make appropriate choices when deploying RL in the real world. This project will require you to implement both the environment to stimulate your problem, and a control agent with Neural Network function approximation. In addition, you will conduct a scientific study of your learning system to develop your ability to assess the robustness of RL agents. To use RL in the real world, it is critical to (a) appropriately formalize the problem as an MDP, (b) select appropriate algorithms, (c ) identify what choices in your implementation will have large impacts on performance and (d) validate the expected behaviour of your algorithms. This capstone is valuable for anyone who is planning on using RL to solve real problems.
Offered by

University of Alberta
UAlberta is considered among the world’s leading public research- and teaching-intensive universities. As one of Canada’s top universities, we’re known for excellence across the humanities, sciences, creative arts, business, engineering and health sciences.

Alberta Machine Intelligence Institute
The Alberta Machine Intelligence Institute (Amii) is home to some of the world’s top talent in machine intelligence. We’re an Alberta-based
Frequently Asked Questions
What is the refund policy?
Can I just enroll in a single course?
Is financial aid available?
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
How long does it take to complete the Specialization?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
What will I be able to do upon completing the Specialization?
More questions? Visit the Learner Help Center.