Datenanalyse-Kurse können Ihnen helfen, Datensätze zu untersuchen, Muster zu erkennen und Ergebnisse verständlich darzustellen. Sie können Fähigkeiten in Statistik, Visualisierung, Datenaufbereitung und grundlegenden Analyseverfahren aufbauen. Viele Kurse führen in Tabellenkalkulationen, Visualisierungstools und Analyse-Workflows ein.

Kompetenzen, die Sie erwerben: Statistische Analyse, Datenwrangling, Datenanalyse, Apache Spark, Datenverarbeitung, Daten-Storytelling, Daten-Seen, Big Data, Analytics, Apache Hive, Data-Warehousing, Apache Hadoop, Daten Präsentation, Datenmarkt, Erhebung von Daten, Auszug, Datenvisualisierung, Daten bereinigen, Microsoft Excel, Statistische Visualisierung
Anfänger · Kurs · 1–3 Monate

Kompetenzen, die Sie erwerben: Datenwrangling, Excel-Formeln, Tabellenverarbeitungssoftware, Datenverarbeitung, Datenanalyse, Datenqualität, Datenmanipulation, Pivot-Tabellen und Diagramme, Daten importieren/exportieren, Google Sheets, Informationen zum Datenschutz, Daten bereinigen, Microsoft Excel
Anfänger · Kurs · 1–3 Monate

Logical Operations
Kompetenzen, die Sie erwerben: Data Storytelling, Data Analysis Expressions (DAX), Excel Formulas, Data Transformation, Data Presentation, Microsoft Excel, Data Visualization, Sampling (Statistics), Dashboard, Data Visualization Software, Spreadsheet Software, Report Writing, Pivot Tables And Charts, Data Analysis, Statistical Analysis, Data Cleansing, Microsoft Office, Geospatial Mapping, Microsoft 365, Productivity Software
Mittel · Spezialisierung · 3–6 Monate

Kompetenzen, die Sie erwerben: Datengesteuerte Entscheidungsfindung, Statistische Analyse, Matplotlib, Pandas (Python-Paket), Regressionsanalyse, Modellevaluation, Prädiktive Modellierung, Datenanalyse, Scikit Learn (Bibliothek für Maschinelles Lernen), Datenvorverarbeitung, NumPy, Datenmanipulation, Datenverarbeitung, Python-Programmierung, Daten importieren/exportieren, Datenvisualisierung, Daten bereinigen, Datenumwandlung, Explorative Datenanalyse
Mittel · Kurs · 1–3 Monate

Kompetenzen, die Sie erwerben: Pandas (Python Package), NumPy, Data Manipulation, Data Preprocessing, Package and Software Management, Data Analysis, Data Transformation, Data Integration, JSON, Object Oriented Programming (OOP), Data Wrangling, Data Science, Python Programming, Computer Programming, Programming Principles, Data Import/Export, Software Design, Mathematical Software, Computational Logic, Data Structures
Anfänger · Spezialisierung · 3–6 Monate

Kompetenzen, die Sie erwerben: Datenstrukturen, Datenanalyse, Paket- und Software-Management, Statistisches Programmieren, Datenvisualisierungssoftware, Ggplot2, Daten importieren/exportieren, R-Programmierung, Rmarkdown, Datenmanipulation, R (Software), Datenvisualisierung, Daten bereinigen, Tidyverse (R-Paket)
Anfänger · Kurs · 1–3 Monate

Kompetenzen, die Sie erwerben: Datengesteuerte Entscheidungsfindung, Unternehmensanalytik, Gemeinsame Nutzung von Daten, Tabellenverarbeitungssoftware, Tableau Software, Datenanalyse, Datenethik, Datenvisualisierungssoftware, Google Sheets, Analytische Fähigkeiten, Analytics, SQL, Erhebung von Daten, Daten bereinigen, Datenvisualisierung, Datenverarbeitung
Anfänger · Kurs · 1–4 Wochen

Kompetenzen, die Sie erwerben: Excel-Formeln, Datenanalyse, Tabellenverarbeitungssoftware, Microsoft Büro, Datenmanipulation, Data-Mining, Pivot-Tabellen und Diagramme, Microsoft Excel
Mittel · angeleitetes Projekt · Weniger als 2 Stunden
Duke University
Kompetenzen, die Sie erwerben: Statistische Methoden, Statistische Analyse, Bayessche Statistik, Statistische Modellierung, Regressionsanalyse, Statistik, Stichproben (Statistik), Datenanalyse, Wahrscheinlichkeitsverteilung, Peer Review, Wahrscheinlichkeit & Statistik, Wahrscheinlichkeit, Datenanalyse-Software, R-Programmierung, R (Software), Statistische Berichterstattung, Datenvisualisierung, Statistische Inferenz, Statistische Hypothesentests, Explorative Datenanalyse
Anfänger · Spezialisierung · 3–6 Monate

Kompetenzen, die Sie erwerben: Dashboard, Datenanalyse, Business Intelligence, Daten-Storytelling, Web Content Accessibility Guidelines, Interaktive Datenvisualisierung, Datenvisualisierungssoftware, Erweiterte Analytik, Daten Präsentation, Statistische Berichterstattung, Datenvisualisierung, Power BI
Anfänger · Kurs · 1–3 Monate

Kompetenzen, die Sie erwerben: Dashboard, Datenanalyse, Statistik, Deskriptive Statistik, Tableau Software, Tabellenverarbeitungssoftware, Daten-Storytelling, Datenvisualisierungssoftware, Datenmanipulation, Korrelationsanalyse, Pivot-Tabellen und Diagramme, SQL, Google Sheets, Explorative Datenanalyse, Datenvisualisierung, Daten bereinigen
Anfänger · Kurs · 1–3 Monate

S.P. Jain Institute of Management and Research
Kompetenzen, die Sie erwerben: Descriptive Statistics, Data Analysis, Analytics, Quantitative Research, Sampling (Statistics), Probability & Statistics, Business Analytics, Statistical Analysis, Regression Analysis, Data-Driven Decision-Making, Statistical Hypothesis Testing, Business Analysis, Microsoft Excel, Variance Analysis, Statistical Inference
Auf einen Abschluss hinarbeiten
Anfänger · Kurs · 1–3 Monate
Personen mit ausgeprägten mathematischen und statistischen Kenntnissen eignen sich am besten für Aufgaben in der Datenanalyse. Ein Datenanalyst ist für die Erfassung von Daten und die Durchführung statistischer Analysen eines großen Datensatzes verantwortlich. Daher ist es wichtig, dass Mitarbeiter in der Datenanalyse organisiert und detailorientiert sind und in der Lage sind, innerhalb enger Fristen zu arbeiten. Ein Datenanalyst sollte nicht nur über gute mathematische Kenntnisse verfügen, sondern auch mit verschiedenen Programmiersprachen vertraut sein und die Fähigkeit besitzen, Datensätze zu analysieren und zusammenzufassen.
Viele Datenanalysten arbeiten an der Wall Street oder bei Hedgefonds, um Anlegern und Großbanken dabei zu helfen, finanzielle Entscheidungen für ihre Portfolios und Kunden zu treffen. Diese Datenanalysten sind für die Erfassung und Analyse großer Mengen von Finanzdaten für Kollegen und Kunden zuständig. Zu den üblichen Karrierewegen im Bereich der Datenanalyse gehört auch die Arbeit im Gesundheitswesen oder in Versicherungsunternehmen.
Es ist wichtig, dass jeder, der Datenanalyse studiert, über gute Mathematikkenntnisse verfügt. Daher können Lernende Themen in Betracht ziehen, die Inferenzstatistik, Wahrscheinlichkeitsrechnung und Daten sowie Datenverarbeitung für Mathematikkenntnisse abdecken. Ein Datenanalyst muss auch mit der Computerprogrammierung vertraut sein, daher sind Themen, die die angewandte Datenverarbeitung mit Python untersuchen, ein Muss. Für Lernende, die sich dafür interessieren, wie man Datenanalysen im Team durchführt, können die Themen "Management von Datenanalysen" und "Aufbau eines Datenverarbeitungsteams" Ihnen helfen, das Potenzial Ihres Teams zu erkennen, und Ihnen Tipps für Management und Planung geben.
Die Beherrschung der Datenanalyse kann Türen zu verschiedenen Karrierewegen in unterschiedlichen Sektoren öffnen:
Möchten Sie die Fähigkeiten Ihres Teams in der Datenanalyse verbessern? Coursera bietet maßgeschneiderte Unternehmenslösungen für Teams von 5-125 Mitarbeitern. Unser Angebot umfasst fortgeschrittene Analysen, maßgeschneiderte Lernpfade und Tools für die Zusammenarbeit. Besuchen Sie unsere Seite Coursera für Teams, um unsere Schulungsoptionen für die Datenanalyse zu erkunden und einen Kauf zu tätigen.
Um die Datenanalyse zu erlernen, sollten Sie zunächst die Bereiche festlegen, auf die Sie sich konzentrieren möchten, z. B. statistische Analyse oder Datenvisualisierung. Melden Sie sich zu entsprechenden Online-Kursen an, üben Sie mit echten Datensätzen und arbeiten Sie an Projekten, um Ihre Fähigkeiten anzuwenden. Auch die Teilnahme an Communities und Foren kann Ihnen Unterstützung und zusätzliche Ressourcen bieten, wenn Sie in Ihrem Lernprozess vorankommen.
Typische Themen, die in Datenanalysekursen behandelt werden, sind Datenbereinigung, explorative Datenanalyse, statistische Methoden, Datenvisualisierungstechniken und die Verwendung von Softwaretools wie Excel, Python und R. Je nach Niveau und Schwerpunkt des Programms können die Kurse auch fortgeschrittene Themen wie Maschinelles Lernen und Big Data Analytik behandeln.
Für das Training und die Weiterbildung von Mitarbeitern in der Datenanalyse sind Kurse wie das Microsoft Generative KI for Data Analysis Professional Certificate und die KI-Enhanced Data Analysis: From Raw Data to Deep Insights Spezialisierung sind eine ausgezeichnete Wahl. Diese Programme sollen Fachleute mit den notwendigen Fähigkeiten ausstatten, um Daten effektiv zu analysieren und Erkenntnisse für das Unternehmenswachstum zu nutzen.