About this Course

55,912 recent views
Shareable Certificate
Earn a Certificate upon completion
100% online
Start instantly and learn at your own schedule.
Flexible deadlines
Reset deadlines in accordance to your schedule.
Intermediate Level
Approx. 28 hours to complete
English
Subtitles: English
Shareable Certificate
Earn a Certificate upon completion
100% online
Start instantly and learn at your own schedule.
Flexible deadlines
Reset deadlines in accordance to your schedule.
Intermediate Level
Approx. 28 hours to complete
English
Subtitles: English

Offered by

Placeholder

University of Colorado Boulder

Placeholder

University of Colorado System

Start working towards your Master's degree

This course is part of the 100% online Master of Science in Electrical Engineering from University of Colorado Boulder. If you are admitted to the full program, your courses count towards your degree learning.

Syllabus - What you will learn from this course

Week
1

Week 1

5 hours to complete

The importance of a good SOC estimator

5 hours to complete
8 videos (Total 120 min), 13 readings, 7 quizzes
8 videos
3.1.2: What is the importance of a good SOC estimator?8m
3.1.3: How do we define SOC carefully?16m
3.1.4: What are some approaches to estimating battery cell SOC?26m
3.1.5: Understanding uncertainty via mean and covariance17m
3.1.6: Understanding joint uncertainty of two unknown quantities15m
3.1.7: Understanding time-varying uncertain quantities22m
3.1.8: Summary of "The importance of a good SOC estimator" and next steps3m
13 readings
Notes for lesson 3.1.11m
Frequently asked questions5m
Course resources5m
How to use discussion forums5m
Earn a course certificate5m
Notes for lesson 3.1.21m
Notes for lesson 3.1.31m
Notes for lesson 3.1.41m
Introducing a new element to the course!10m
Notes for lesson 3.1.51m
Notes for lesson 3.1.61m
Notes for lesson 3.1.71m
Notes for lesson 3.1.81m
7 practice exercises
Practice quiz for lesson 3.1.210m
Practice quiz for lesson 3.1.310m
Practice quiz for lesson 3.1.410m
Practice quiz for lesson 3.1.515m
Practice quiz for lesson 3.1.610m
Practice quiz for lesson 3.1.730m
Quiz for week 140m
Week
2

Week 2

3 hours to complete

Introducing the linear Kalman filter as a state estimator

3 hours to complete
6 videos (Total 97 min), 6 readings, 6 quizzes
6 videos
3.2.2: The Kalman-filter gain factor23m
3.2.3: Summarizing the six steps of generic probabilistic inference9m
3.2.4: Deriving the three Kalman-filter prediction steps21m
3.2.5: Deriving the three Kalman-filter correction steps16m
3.2.6: Summary of "Introducing the linear KF as a state estimator" and next steps2m
6 readings
Notes for lesson 3.2.11m
Notes for lesson 3.2.21m
Notes for lesson 3.2.31m
Notes for lesson 3.2.41m
Notes for lesson 3.2.51m
Notes for lesson 3.2.61m
6 practice exercises
Practice quiz for lesson 3.2.112m
Practice quiz for lesson 3.2.210m
Practice quiz for lesson 3.2.310m
Practice quiz for lesson 3.2.410m
Practice quiz for lesson 3.2.510m
Quiz for week 230m
Week
3

Week 3

4 hours to complete

Coming to understand the linear Kalman filter

4 hours to complete
7 videos (Total 86 min), 7 readings, 7 quizzes
7 videos
3.3.2: Introducing Octave code to generate correlated random numbers15m
3.3.3: Introducing Octave code to implement KF for linearized cell model10m
3.3.4: How do we improve numeric robustness of Kalman filter?10m
3.3.5: Can we automatically detect bad measurements with a Kalman filter?14m
3.3.6: How do I initialize and tune a Kalman filter?12m
3.3.7: Summary of "Coming to understand the linear KF" and next steps2m
7 readings
Notes for lesson 3.3.11m
Notes for lesson 3.3.21m
Notes for lesson 3.3.31m
Notes for lesson 3.3.41m
Notes for lesson 3.3.51m
Notes for lesson 3.3.61m
Notes for lesson 3.3.71m
7 practice exercises
Practice quiz for lesson 3.3.110m
Practice quiz for lesson 3.3.210m
Practice quiz for lesson 3.3.310m
Practice quiz for lesson 3.3.410m
Practice quiz for lesson 3.3.510m
Practice quiz for lesson 3.3.610m
Quiz for week 330m
Week
4

Week 4

4 hours to complete

Cell SOC estimation using an extended Kalman filter

4 hours to complete
8 videos (Total 101 min), 8 readings, 7 quizzes
8 videos
3.4.2: Deriving the three extended-Kalman-filter prediction steps15m
3.4.3: Deriving the three extended-Kalman-filter correction steps6m
3.4.4: Introducing a simple EKF example, with Octave code15m
3.4.5: Preparing to implement EKF on an ECM20m
3.4.6: Introducing Octave code to initialize and control EKF for SOC estimation13m
3.4.7: Introducing Octave code to update EKF for SOC estimation16m
3.4.8: Summary of "Cell SOC estimation using an EKF" and next steps2m
8 readings
Notes for lesson 3.4.11m
Notes for lesson 3.4.21m
Notes for lesson 3.4.31m
Notes for lesson 3.4.41m
Notes for lesson 3.4.51m
Notes for lesson 3.4.61m
Notes for lesson 3.4.71m
Notes for lesson 3.4.81m
7 practice exercises
Practice quiz for lesson 3.4.110m
Practice quiz for lesson 3.4.210m
Practice quiz for lesson 3.4.310m
Practice quiz for lesson 3.4.410m
Practice quiz for lesson 3.4.510m
Practice quiz for lesson 3.4.710m
Quiz for week 430m

Reviews

TOP REVIEWS FROM BATTERY STATE-OF-CHARGE (SOC) ESTIMATION

View all reviews

About the Algorithms for Battery Management Systems Specialization

In this specialization, you will learn the major functions that must be performed by a battery management system, how lithium-ion battery cells work and how to model their behaviors mathematically, and how to write algorithms (computer methods) to estimate state-of-charge, state-of-health, remaining energy, and available power, and how to balance cells in a battery pack....
Algorithms for Battery Management Systems

Frequently Asked Questions

More questions? Visit the Learner Help Center.