This first course on concepts of single variable calculus will introduce the notions of limits of a function to define the derivative of a function. In mathematics, the derivative measures the sensitivity to change of the function. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. This fundamental notion will be applied through the modelling and analysis of data.

Offered By

## About this Course

## Offered by

### Johns Hopkins University

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.

## Syllabus - What you will learn from this course

**2 hours to complete**

## The Limit of a Function

One of the goals in studying Calculus is to analyze rates of change and movement. In this module, we introduce the central ideas which will help us achieve this goal: the notions of the limit and the derivative. Rather than evaluating a function at a single point, the limit allows for the study of the behavior of a function in an interval around that point. In this module, you will find limits of functions by a variety of methods, both visually and algebraically. Finally, we will apply limits to define the key idea of Differentiable Calculus, the derivative.

**2 hours to complete**

**1 hour to complete**

## The Limit Laws

Using calculators or graphs is an imprecise way to find the limit of a function. In this module, we will state and use algebraic properties of limits, called the Limit Laws, to calculate the exact values of limits. A solid understanding of these laws will allow us to derive theorems which in turn can be used to study the behavior of more advanced functions.

**1 hour to complete**

**2 hours to complete**

## Continuity

In the last module, there were several types of functions where the limit of a function as x approaches a number could be found by simply calculating the value of the function at the number. Functions with this property will be called continuous and in this module, we use limits to define continuity. We will see that the mathematical definition of continuity will correspond closely with the English meaning of the word continuity used in every day language.

**2 hours to complete**

**1 hour to complete**

## Limits at Infinity

In this module, we allow for x to become arbitrarily large in the positive or negative direction to understand the end-behaviors of functions. This will allow for the formal definition of a horizontal asymptote and to provide classifications of end-behavior of certain types of functions.

**1 hour to complete**

## Reviews

### TOP REVIEWS FROM CALCULUS THROUGH DATA & MODELING: LIMITS & DERIVATIVES

This course gets me to be ready to tutor my son. Thanks

Loved the course. Prof Cutrone is a great teacher!!!

## About the Differential Calculus through Data and Modeling Specialization

This specialization provides an introduction to topics in single and multivariable calculus, and focuses on using calculus to address questions in the natural and social sciences. Students will learn to use the tools of calculus to process, analyze, and interpret data, and to communicate meaningful results, using scientific computing and mathematical modeling. Topics include functions as models of data, differential and integral calculus of functions of one and several variables, differential equations, and optimization and estimation techniques.

## Frequently Asked Questions

When will I have access to the lectures and assignments?

What will I get if I subscribe to this Specialization?

Is financial aid available?

Will I earn university credit for completing the Course?

More questions? Visit the Learner Help Center.