This is the second of a two-course sequence introducing the fundamentals of Bayesian statistics. It builds on the course Bayesian Statistics: From Concept to Data Analysis, which introduces Bayesian methods through use of simple conjugate models. Real-world data often require more sophisticated models to reach realistic conclusions. This course aims to expand our “Bayesian toolbox” with more general models, and computational techniques to fit them. In particular, we will introduce Markov chain Monte Carlo (MCMC) methods, which allow sampling from posterior distributions that have no analytical solution. We will use the open-source, freely available software R (some experience is assumed, e.g., completing the previous course in R) and JAGS (no experience required). We will learn how to construct, fit, assess, and compare Bayesian statistical models to answer scientific questions involving continuous, binary, and count data. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. The lectures provide some of the basic mathematical development, explanations of the statistical modeling process, and a few basic modeling techniques commonly used by statisticians. Computer demonstrations provide concrete, practical walkthroughs. Completion of this course will give you access to a wide range of Bayesian analytical tools, customizable to your data.
This course is part of the Bayesian Statistics Specialization
Offered By
About this Course
Could your company benefit from training employees on in-demand skills?
Try Coursera for BusinessSkills you will gain
- Gibbs Sampling
- Bayesian Statistics
- Bayesian Inference
- R Programming
Could your company benefit from training employees on in-demand skills?
Try Coursera for BusinessOffered by
Syllabus - What you will learn from this course
Statistical modeling and Monte Carlo estimation
Markov chain Monte Carlo (MCMC)
Common statistical models
Count data and hierarchical modeling
Reviews
- 5 stars83.07%
- 4 stars12.96%
- 3 stars2.19%
- 2 stars0.87%
- 1 star0.87%
TOP REVIEWS FROM BAYESIAN STATISTICS: TECHNIQUES AND MODELS
This course is excellent! The material is very very interesting, the videos are of high quality and the quizzes and project really helps you getting it together. I really enjoyed it!!!
Outstanding, Excellent, Must do for statistician. I'm from Civil Engg Background easily capable to learn the course
One of the best designed courses. The material and videos are very precise and informative. The quiz questions and assignment are very enjoyable. Thank you !
Very good course giving a good practical kickoff to a very interesting and exciting topic of Bayesian statistics.
About the Bayesian Statistics Specialization

Frequently Asked Questions
When will I have access to the lectures and assignments?
What will I get if I subscribe to this Specialization?
Is financial aid available?
More questions? Visit the Learner Help Center.