Machine Learning: Predict Poisonous Mushrooms using a Random Forest Model and the FFTrees Package in R

4.6
stars
87 ratings
Offered By
Coursera Project Network
4,228 already enrolled
In this Guided Project, you will:

Complete a random Training and Test Set from one Data Source using an R function.

Practice data exploration using R and ggplot2.

Apply a Random Forest model using the FFTrees package in R.

Clock2 Hours
IntermediateIntermediate
CloudNo download needed
VideoSplit-screen video
Comment DotsEnglish
LaptopDesktop only

In this 1-hour long project-based course, you will learn how to complete a training and test set using an R function, practice looking at data distribution using R and ggplot2, Apply a Random Forest model to the data using the FFTrees package in R, and examine the results using a Confusion Matrix. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

R ProgrammingRandom Forest Model

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Random Forest Model using R and the FFTrees package developed by Nathaniel Phillips. There will be a short discussion about the Interface and an Instructor Bio.

  2. Task 2: The Learners will get practice doing Exploratory Analysis using ggplot2. This is important in order for the practitioner to see the balance of the data, especially as it relates to the Response Variable.

  3. Task 3: The Learner will get experience creating Testing and Training Data Sets. There are multiple ways to do this in R. The Instructor will show the Learner how to do it using the Base R way and also using a function from the caret package.

  4. Task 4: The Learner will get experience with the syntax of FFTrees package and then will execute the Random Forest Model.

  5. Task 5: The Learner will get practice with building a Confusion Matrix to evaluate model performance.

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Instructor

Reviews

TOP REVIEWS FROM MACHINE LEARNING: PREDICT POISONOUS MUSHROOMS USING A RANDOM FOREST MODEL AND THE FFTREES PACKAGE IN R

View all reviews

Frequently asked questions

Frequently Asked Questions

More questions? Visit the Learner Help Center.