World and internet is full of textual information. We search for information using textual queries, we read websites, books, e-mails. All those are strings from the point of view of computer science. To make sense of all that information and make search efficient, search engines use many string algorithms. Moreover, the emerging field of personalized medicine uses many search algorithms to find disease-causing mutations in the human genome.
Offered By
About this Course
Learner Career Outcomes
36%
29%
Skills you will gain
Learner Career Outcomes
36%
29%
Offered by

University of California San Diego
UC San Diego is an academic powerhouse and economic engine, recognized as one of the top 10 public universities by U.S. News and World Report. Innovation is central to who we are and what we do. Here, students learn that knowledge isn't just acquired in the classroom—life is their laboratory.

National Research University Higher School of Economics
National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more.
Syllabus - What you will learn from this course
Suffix Trees
How would you search for a longest repeat in a string in LINEAR time? In 1973, Peter Weiner came up with a surprising solution that was based on suffix trees, the key data structure in pattern matching. Computer scientists were so impressed with his algorithm that they called it the Algorithm of the Year. In this lesson, we will explore some key ideas for pattern matching that will - through a series of trials and errors - bring us to suffix trees.
Burrows-Wheeler Transform and Suffix Arrays
Although EXACT pattern matching with suffix trees is fast, it is not clear how to use suffix trees for APPROXIMATE pattern matching. In 1994, Michael Burrows and David Wheeler invented an ingenious algorithm for text compression that is now known as Burrows-Wheeler Transform. They knew nothing about genomics, and they could not have imagined that 15 years later their algorithm will become the workhorse of biologists searching for genomic mutations. But what text compression has to do with pattern matching??? In this lesson you will learn that the fate of an algorithm is often hard to predict – its applications may appear in a field that has nothing to do with the original plan of its inventors.
Knuth–Morris–Pratt Algorithm
Congratulations, you have now learned the key pattern matching concepts: tries, suffix trees, suffix arrays and even the Burrows-Wheeler transform! However, some of the results Pavel mentioned remain mysterious: e.g., how can we perform exact pattern matching in O(|Text|) time rather than in O(|Text|*|Pattern|) time as in the naïve brute force algorithm? How can it be that matching a 1000-nucleotide pattern against the human genome is nearly as fast as matching a 3-nucleotide pattern??? Also, even though Pavel showed how to quickly construct the suffix array given the suffix tree, he has not revealed the magic behind the fast algorithms for the suffix tree construction!In this module, Miсhael will address some algorithmic challenges that Pavel tried to hide from you :) such as the Knuth-Morris-Pratt algorithm for exact pattern matching and more efficient algorithms for suffix tree and suffix array construction.
Constructing Suffix Arrays and Suffix Trees
In this module we continue studying algorithmic challenges of the string algorithms. You will learn an O(n log n) algorithm for suffix array construction and a linear time algorithm for construction of suffix tree from a suffix array. You will also implement these algorithms and the Knuth-Morris-Pratt algorithm in the last Programming Assignment in this course.
Reviews
TOP REVIEWS FROM ALGORITHMS ON STRINGS
Very good course. String algorithms are very important in day today life and one should really know how to solve command problems related to it. This course have described everything so well.
course content was great but i personally feels some difficulties in the implementation part so the course is meant to be more implementation oriented . thank you for the wondorful course
Very well put together course. Challenging but understandable. I highly recommend you stick out. If you get stuck check the forums there's lots of helpful things there. Time well spent!
Its a very good course overall. Just felt that towards the end the material got too much to digest, might be a good idea to split the contents of weeks 3 and 4 into 3 or 4 weeks.
About the Data Structures and Algorithms Specialization
This specialization is a mix of theory and practice: you will learn algorithmic techniques for solving various computational problems and will implement about 100 algorithmic coding problems in a programming language of your choice. No other online course in Algorithms even comes close to offering you a wealth of programming challenges that you may face at your next job interview. To prepare you, we invested over 3000 hours into designing our challenges as an alternative to multiple choice questions that you usually find in MOOCs. Sorry, we do not believe in multiple choice questions when it comes to learning algorithms...or anything else in computer science! For each algorithm you develop and implement, we designed multiple tests to check its correctness and running time — you will have to debug your programs without even knowing what these tests are! It may sound difficult, but we believe it is the only way to truly understand how the algorithms work and to master the art of programming. The specialization contains two real-world projects: Big Networks and Genome Assembly. You will analyze both road networks and social networks and will learn how to compute the shortest route between New York and San Francisco (1000 times faster than the standard shortest path algorithms!) Afterwards, you will learn how to assemble genomes from millions of short fragments of DNA and how assembly algorithms fuel recent developments in personalized medicine.

Frequently Asked Questions
When will I have access to the lectures and assignments?
What will I get if I subscribe to this Specialization?
Is financial aid available?
More questions? Visit the Learner Help Center.