**About this course: **This course introduces the Bayesian approach to statistics, starting with the concept of probability and moving to the analysis of data. We will learn about the philosophy of the Bayesian approach as well as how to implement it for common types of data. We will compare the Bayesian approach to the more commonly-taught Frequentist approach, and see some of the benefits of the Bayesian approach. In particular, the Bayesian approach allows for better accounting of uncertainty, results that have more intuitive and interpretable meaning, and more explicit statements of assumptions. This course combines lecture videos, computer demonstrations, readings, exercises, and discussion boards to create an active learning experience. For computing, you have the choice of using Microsoft Excel or the open-source, freely available statistical package R, with equivalent content for both options. The lectures provide some of the basic mathematical development as well as explanations of philosophy and interpretation. Completion of this course will give you an understanding of the concepts of the Bayesian approach, understanding the key differences between Bayesian and Frequentist approaches, and the ability to do basic data analyses.

DS

What I liked in the course is that it focuses on examples and solving actual problems. The quantity and the quality of the lectures is great, but what I really missed is written lectures where one can always lookup forgotten things or read details etc. Also, one thing that I think might be added easily is a reference to Mathematica and Maple's routines. I'm using Maple and it took some efforts to get on track. And finally, I think that 4 quizes per week is really too much for working people. It's true that the tests weren't that difficult, but it took me about an hour to do each, so I think 30 mins of lectures vs. 4 hours of quizzes is a bit unfair. Of course, my background in statistics is non-existent so it may be that it took me longer than average. But I think the course material could have been spread over say 6 weeks for lighter load on the students. All best to the team!