An emerging trend in AI is the availability of technologies in which automation is used to select a best-fit model, perform feature engineering and improve model performance via hyperparameter optimization. This automation will provide rapid-prototyping of models and allow the Data Scientist to focus their efforts on applying domain knowledge to fine-tune models. This course will take the learner through the creation of an end-to-end automated pipeline built by Watson Studio’s AutoAI experiment tool, explaining the underlying technology at work as developed by IBM Research. The focus will be on working with an auto-generated Python notebook. Learners will be provided with test data sets for two use cases.
Offered By


Machine Learning Rapid Prototyping with IBM Watson Studio
IBMAbout this Course
Skills you will gain
- Data Science
- Information Engineering
- Artificial Intelligence (AI)
- Machine Learning
- Python Programming
Offered by

IBM
IBM is the global leader in business transformation through an open hybrid cloud platform and AI, serving clients in more than 170 countries around the world. Today 47 of the Fortune 50 Companies rely on the IBM Cloud to run their business, and IBM Watson enterprise AI is hard at work in more than 30,000 engagements. IBM is also one of the world’s most vital corporate research organizations, with 28 consecutive years of patent leadership. Above all, guided by principles for trust and transparency and support for a more inclusive society, IBM is committed to being a responsible technology innovator and a force for good in the world.
Syllabus - What you will learn from this course
Building a Rapid Prototype with Watson Studio AutoAI
In this module, you'll learn about the developing landscape of AutoAI technologies. You'll also become familiar with the Watson Studio platform in order to be able to perform your own AutoAI Experiments. After observing the AutoAI tool build prototypes for two use cases, you will try out the tool for yourself to build additional prototypes.
Automated Data Preparation and Model Selection
In this module, you will learn about the automated data preparation techniques performed by AutoAI and get a chance to experiment with different settings for data preprocessing in the AutoAI-generated Python notebook. You'll also learn about the procedure for automated model selection and experiment using different models on the datasets.
Automated Feature Engineering and Hyperparameter Optimization
In this module, you will learn about the algorithm for automated feature engineering and perform some exploratory data analysis to try to understand why the algorithm performed particular feature transformations. You'll also learn about sophisticated methods for optimizing hyperparameters and explore hyperparameter tuning on the datasets using the AutoAI-generated Python notebook.
Evaluation and Deployment of AutoAI-generated Solutions
In this module, you will evaluate prototypes using the different evaluation metrics calculated by the AutoAI tool. You will also deploy the prototype for testing using the Watson Machine Learning API.
Frequently Asked Questions
When will I have access to the lectures and assignments?
What will I get if I purchase the Certificate?
Is financial aid available?
More questions? Visit the Learner Help Center.