This course covers the most important numerical methods that an engineer should know, including root finding, matrix algebra, integration and interpolation, ordinary and partial differential equations. We learn how to use MATLAB to solve numerical problems, and access to MATLAB online and the MATLAB grader is given to all students who enroll.

# Numerical Methods for Engineers

This course is part of Mathematics for Engineers Specialization

Taught in English

Some content may not be translated

Instructor: Jeffrey R. Chasnov

Top Instructor

**21,516** already enrolled

Included with

## Course

(314 reviews)

92%

Recommended experience

## What you'll learn

MATLAB and Scientific Computing

Root Finding and Numerical Matrix Algebra

Quadrature and Interpolation

Numerical Solution of Ordinary and Partial Differential Equations

## Details to know

Add to your LinkedIn profile

14 quizzes

## Course

(314 reviews)

92%

Recommended experience

# See how employees at top companies are mastering in-demand skills

## Build your subject-matter expertise

- Learn new concepts from industry experts
- Gain a foundational understanding of a subject or tool
- Develop job-relevant skills with hands-on projects
- Earn a shareable career certificate

## Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

## There are 6 modules in this course

MATLAB is a high-level programming language extensively utilized by engineers for numerical computation and visualization. We will learn the basics of MATLAB: how real numbers are represented in double precision; how to perform arithmetic with MATLAB; how to use scripts and functions; how to represent vectors and matrices; how to draw line plots; and how to use logical variables, conditional statements, for loops and while loops. For your programming project, you will write a MATLAB code to compute the bifurcation diagram for the logistic map.

#### What's included

14 videos16 readings3 quizzes10 app items

Root finding is a numerical technique used to determine the roots, or zeros, of a given function. We will explore several root-finding methods, including the Bisection method, Newton's method, and the Secant method. We will also derive the order of convergence for these methods. Additionally, we will demonstrate how to compute the Newton fractal using Newton's method in MATLAB, and discuss MATLAB functions that can be used to find roots. For your programming project, you will write a MATLAB code using Newton's method to compute the Feigenbaum delta from the bifurcation diagram for the logistic map.

#### What's included

12 videos9 readings2 quizzes4 app items1 plugin

Numerical linear algebra is the term used for matrix algebra performed on a computer. When conducting Gaussian elimination with large matrices, round-off errors may compromise the computation. These errors can be mitigated using the method of partial pivoting, which involves row interchanges before each elimination step. The LU decomposition algorithm must then incorporate permutation matrices. We will also discuss operation counts and the big-Oh notation for predicting the increase in computational time with larger problem sizes. We will show how to count the number of required operations for Gaussian elimination, forward substitution, and backward substitution. We will explain the power method for computing the largest eigenvalue of a matrix. Finally, we will show how to use Gaussian elimination to solve a system of nonlinear differential equations using Newton's method. For your programming project, you will write a MATLAB code that applies Newton's method to the Lorenz equations.

#### What's included

13 videos11 readings2 quizzes5 app items

The computation of definite integrals is known as quadrature. We will explore the fundamentals of quadrature, including elementary formulas for the Trapezoidal rule and Simpson’s rule; development of composite integration rules; an introduction to Gaussian quadrature; construction of an adaptive quadrature routine where the software determines the appropriate integration step size; and the usage of the MATLAB function integral.m. Additionally, we will learn about interpolation. A good interpolation routine can estimate function values at intermediate sample points. We will learn about linear interpolation, commonly employed for plotting data with numerous points; and cubic spline interpolation, used when data points are sparse. For your programming project, you will write a MATLAB code to compute the zeros of a Bessel function. This task requires the combination of both quadrature and root-finding routines.

#### What's included

13 videos12 readings2 quizzes4 app items

We will learn about the numerical integration of ordinary differential equations (ODEs). We will introduce the Euler method, a single-step, first-order method, and the Runge-Kutta methods, which extend the Euler method to multiple steps and higher order, allowing for larger time steps. We will show how to construct a family of second-order Runge-Kutta methods, discuss the widely-used fourth-order Runge-Kutta method, and adopt these methods for solving systems of ODEs. We will show how to use the MATLAB function ode45.m, and how to solve a two-point boundary value ODE using the shooting method. For your programming project, you will conduct a numerical simulation of the gravitational two-body problem.

#### What's included

13 videos10 readings2 quizzes4 app items

We will learn how to solve partial differential equations (PDEs). While this is a vast topic with various specialized solution methods, such as those found in computational fluid dynamics, we will provide a basic introduction to the subject. We will categorize PDE solutions into boundary value problems and initial value problems. We will then apply the finite difference method for solving PDEs. We will solve the Laplace equation, a boundary value problem, using two methods: a direct method via Gaussian elimination; and an iterative method, where the solution is approached asymptotically. We will next solve the one-dimensional diffusion equation, an initial value problem, using the Crank-Nicolson method. We will also employ the Von Neumann stability analysis to determine the stability of time-integration schemes. For your programming project, you will solve the two-dimensional diffusion equation using the Crank-Nicolson method.

#### What's included

17 videos16 readings3 quizzes5 app items

### Instructor

Top Instructor

### Recommended if you're interested in Math and Logic

The Hong Kong University of Science and Technology

Ludwig-Maximilians-Universität München (LMU)

The Hong Kong University of Science and Technology

The Hong Kong University of Science and Technology

## Why people choose Coursera for their career

## Learner reviews

Showing 3 of 314

314 reviews

- 5 stars
90.47%

- 4 stars
6.66%

- 3 stars
1.26%

- 2 stars
0.63%

- 1 star
0.95%

## Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

## Advance your career with an online degree

Earn a degree from world-class universities - 100% online

## Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

## Frequently asked questions

Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.