This course is about differential equations and covers material that all engineers should know. Both basic theory and applications are taught. In the first five weeks we will learn about ordinary differential equations, and in the final week, partial differential equations.

Offered By

## Differential Equations for Engineers

The Hong Kong University of Science and Technology## About this Course

Knowledge of single variable calculus.

### What you will learn

First-order differential equations

Second-order differential equations

The Laplace transform and series solution methods

Systems of differential equations and partial differential equations

## Skills you will gain

Knowledge of single variable calculus.

### Offered by

#### The Hong Kong University of Science and Technology

HKUST - A dynamic, international research university, in relentless pursuit of excellence, leading the advance of science and technology, and educating the new generation of front-runners for Asia and the world.

## Syllabus - What you will learn from this course

**5 hours to complete**

## First-Order Differential Equations

A differential equation is an equation for a function with one or more of its derivatives. We introduce differential equations and classify them. We then learn about the Euler method for numerically solving a first-order ordinary differential equation (ode). Then we learn analytical methods for solving separable and linear first-order odes. An explanation of the theory is followed by illustrative solutions of some simple odes. Finally, we learn about three real-world examples of first-order odes: compound interest, terminal velocity of a falling mass, and the resistor-capacitor electrical circuit.

**5 hours to complete**

**15 videos**

**12 readings**

**6 practice exercises**

**4 hours to complete**

## Homogeneous Linear Differential Equations

We generalize the Euler numerical method to a second-order ode. We then develop two theoretical concepts used for linear equations: the principle of superposition, and the Wronskian. Armed with these concepts, we can find analytical solutions to a homogeneous second-order ode with constant coefficients. We make use of an exponential ansatz, and transform the constant-coefficient ode to a quadratic equation called the characteristic equation of the ode. The characteristic equation may have real or complex roots and we learn solution methods for the different cases.

**4 hours to complete**

**11 videos**

**11 readings**

**3 practice exercises**

**5 hours to complete**

## Inhomogeneous Linear Differential Equations

We now add an inhomogeneous term to the constant-coefficient ode. The inhomogeneous term may be an exponential, a sine or cosine, or a polynomial. We also study the phenomena of resonance, when the forcing frequency is equal to the natural frequency of the oscillator. Finally, we learn about three important applications: the RLC electrical circuit, a mass on a spring, and the pendulum.

**5 hours to complete**

**12 videos**

**9 readings**

**4 practice exercises**

**4 hours to complete**

## The Laplace Transform and Series Solution Methods

We present two new analytical solution methods for solving linear odes. The first is the Laplace transform method, which is used to solve the constant-coefficient ode with a discontinuous or impulsive inhomogeneous term. The Laplace transform is a good vehicle in general for introducing sophisticated integral transform techniques within an easily understandable context. We also discuss the series solution of a linear ode. Although we do not go deeply here, an introduction to this technique may be useful to students that encounter it again in more advanced courses.

**4 hours to complete**

**11 videos**

**10 readings**

**4 practice exercises**

## Reviews

### TOP REVIEWS FROM DIFFERENTIAL EQUATIONS FOR ENGINEERS

Very good course if you want to start using differential equations without any rigorous details. Thanks to professor`s explanation everything is very clear. Good basis to continue to dive deeper.

Best course. have explained the theoratical and practical aspects of differential equations and at the same time covered a substantial chunk of the subject in a very easy and didactic manner.

The way of teaching and explanation is excellent. By taking this course I really enhanced my teaching skills. I express my sincere thanks to Prof. Jeffery R Chasnov from bottom of my heart.

Very Well done. Could use some supplemental videos of Calculus with SERIES and Fourier Transform (week 6 is A LOT) but it was very well done and manageable for the motivated student.

## Frequently Asked Questions

When will I have access to the lectures and assignments?

Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

- The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
- The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

What will I get if I purchase the Certificate?

When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

What is the refund policy?

You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.

Is financial aid available?

Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You’ll be prompted to complete an application and will be notified if you are approved. Learn more.

More questions? Visit the Learner Help Center.