We cover both basic theory and applications. In the first week we learn about scalar and vector fields, in the second week about differentiating fields, in the third week about integrating fields. The fourth week covers the fundamental theorems of vector calculus, including the gradient theorem, the divergence theorem and Stokes’ theorem. These theorems are needed in core engineering subjects such as Electromagnetism and Fluid Mechanics.

Offered By

## Vector Calculus for Engineers

The Hong Kong University of Science and Technology## About this Course

#### Shareable Certificate

#### 100% online

#### Flexible deadlines

#### Beginner Level

A course in single variable calculus

#### Approx. 22 hours to complete

#### English

### What you will learn

The dot product and cross product

The gradient, divergence, curl, and Laplacian

Multivariable integration, line integrals, flux integrals, cylindrical and spherical coordinates

The gradient theorem, divergence theorem and Stokes' theorem

### Skills you will gain

#### Shareable Certificate

#### 100% online

#### Flexible deadlines

#### Beginner Level

A course in single variable calculus

#### Approx. 22 hours to complete

#### English

### Offered by

#### The Hong Kong University of Science and Technology

HKUST - A dynamic, international research university, in relentless pursuit of excellence, leading the advance of science and technology, and educating the new generation of front-runners for Asia and the world.

## Syllabus - What you will learn from this course

**6 hours to complete**

## Vectors

A vector is a mathematical construct that has both length and direction. We will define vectors and learn how to add and subtract them, and how to multiply them using the scalar and vector products (dot and cross products). We will use vectors to learn some analytical geometry of lines and planes, and learn about the Kronecker delta and the Levi-Civita symbol to prove vector identities. The important concepts of scalar and vector fields will be introduced.

**6 hours to complete**

**15 videos**

**20 readings**

**5 practice exercises**

**5 hours to complete**

## Differentiation

Scalar and vector fields can be differentiated. We define the partial derivative and derive the method of least squares as a minimization problem. We learn how to use the chain rule for a function of several variables, and derive the triple product rule used in chemical engineering. From the del differential operator, we define the gradient, divergence, curl and Laplacian. We learn some useful vector calculus identities and how to derive them using the Kronecker delta and Levi-Civita symbol. Vector identities are then used to derive the electromagnetic wave equation from Maxwell's equation in free space. Electromagnetic waves form the basis for all modern communication technologies.

**5 hours to complete**

**13 videos**

**13 readings**

**4 practice exercises**

**5 hours to complete**

## Integration and Curvilinear Coordinates

Scalar and vector fields can be integrated. We learn about double and triple integrals, and line integrals and surface integrals. Curvilinear coordinates, namely polar coordinates in two dimensions, and cylindrical and spherical coordinates in three dimensions, are used to simplify problems with cylindrical or spherical symmetry. We learn how to change variables in multidimensional integrals using the Jacobian of the transformation.

**5 hours to complete**

**12 videos**

**20 readings**

**5 practice exercises**

**5 hours to complete**

## Fundamental Theorems

The fundamental theorem of calculus links integration with differentiation. Here, we learn the related fundamental theorems of vector calculus. These include the gradient theorem, the divergence theorem, and Stokes' theorem. We show how these theorems are used to derive continuity equations, define the divergence and curl in coordinate-free form, and convert the integral version of Maxwell's equations into their more famous differential form.

**5 hours to complete**

**12 videos**

**18 readings**

**4 practice exercises**

## Frequently Asked Questions

When will I have access to the lectures and assignments?

Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

What will I get if I purchase the Certificate?

When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

What is the refund policy?

You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.

Is financial aid available?

Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You’ll be prompted to complete an application and will be notified if you are approved. Learn more.

More questions? Visit the Learner Help Center.