Data Science Fundamentals Specialization
Gain an overview of data science fundamentals.
Offered By


What you will learn
The knowledge and skills needed to work in the data science profession
How data science is used to solve business problems
The benefits of using the cross-industry standard process for data mining (CRISP-DM)
The application of predictive modeling to professional and academic work
Skills you will gain
About this Specialization
Applied Learning Project
This specialization includes a capstone assignment in the fourth course that allows students to apply what they've learned about data science to a practical business scenario. This assignment requires students to evaluate a business scenario and then choose the best analytical approach that solves the stated business problem.
No prior experience required.
No prior experience required.
There are 4 Courses in this Specialization
Intro to Analytic Thinking, Data Science, and Data Mining
Welcome to Introduction to Analytic Thinking, Data Science, and Data Mining. In this course, we will begin with an exploration of the field and profession of data science with a focus on the skills and ethical considerations required when working with data. We will review the types of business problems data science can solve and discuss the application of the CRISP-DM process to data mining efforts. A brief overview of Descriptive, Predictive, and Prescriptive Analytics will be provided, and we will conclude the course with an exploratory activity to learn more about the tools and resources you might find in a data science toolkit.
Predictive Modeling, Model Fitting, and Regression Analysis
Welcome to Predictive Modeling, Model Fitting, and Regression Analysis. In this course, we will explore different approaches in predictive modeling, and discuss how a model can be either supervised or unsupervised. We will review how a model can be fitted, trained and scored to apply to both historical and future data in an effort to address business objectives. Finally, this course includes a hands-on activity to develop a linear regression model.
Cluster Analysis, Association Mining, and Model Evaluation
Welcome to Cluster Analysis, Association Mining, and Model Evaluation. In this course we will begin with an exploration of cluster analysis and segmentation, and discuss how techniques such as collaborative filtering and association rules mining can be applied. We will also explain how a model can be evaluated for performance, and review the differences in analysis types and when to apply them.
Natural Language Processing and Capstone Assignment
Welcome to Natural Language Processing and Capstone Assignment. In this course we will begin with an Recognize how technical and business techniques can be used to deliver business insight, competitive intelligence, and consumer sentiment. The course concludes with a capstone assignment in which you will apply a wide range of what has been covered in this specialization.
Offered by

University of California, Irvine
Since 1965, the University of California, Irvine has combined the strengths of a major research university with the bounty of an incomparable Southern California location. UCI’s unyielding commitment to rigorous academics, cutting-edge research, and leadership and character development makes the campus a driving force for innovation and discovery that serves our local, national and global communities in many ways.
Frequently Asked Questions
What is the refund policy?
Can I just enroll in a single course?
Is financial aid available?
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
Will I earn university credit for completing the Specialization?
More questions? Visit the Learner Help Center.