Nowadays the complexity of computing systems is skyrocketing. Programmers have to deal with extremely powerful computing systems that take time and considerable skills to be instructed to perform at their best. It is clear that it is not feasible to rely on human intervention to tune a system: conditions change frequently, rapidly, and unpredictably. It would be desirable to have the system automatically adapt to the mutating environment.
FPGA computing systems: A Bird’s Eye View
2,254 already enrolled
(24 reviews)
Recommended experience
What you'll learn
You will learn to give examples of different kinds of reconfigurations
You will able to define reconfigurable computing, to explain the rationale behind an FPGA-based reconfigurable computing system
You will learn how an FPGA can be configured and what a bitstream is used for.
You will learn to design a circuit on an FPGA and how a circuit can be implemented on an FPGA.
Skills you'll gain
Details to know
Add to your LinkedIn profile
11 quizzes
See how employees at top companies are mastering in-demand skills
Earn a career certificate
Add this credential to your LinkedIn profile, resume, or CV
Share it on social media and in your performance review
There are 4 modules in this course
Nowadays the complexity of computing systems is skyrocketing. Programmers have to deal with extremely powerful computing systems that take time and considerable skills to be instructed to perform at their best. It is clear that it is not feasible to rely on human intervention to tune a system: conditions change frequently, rapidly, and unpredictably. It would be desirable to have the system automatically adapt to the mutating environment. This module analyzes the stated problem, embraces a radically new approach, and it introduces how software and hardware systems ca ben adjusted during execution. By doing this, we are going to introduce the Field Programmable Gate Arrays (FPGA) technologies and how they can be (re)configured.
What's included
8 videos5 readings5 quizzes
Traditionally, computing was classified into General-Purpose Computing performed by a General-Purpose Processor (GPP) and Application-Specific Computing performed by an Application-Specific Integrated Circuit (ASIC). As a trade-off between the two extreme characteristics of GPP and ASIC, reconfigurable computing has combined the advantages of both. On one hand reconfigurable computing can have better performance with respect to a software implementation but paying this in terms of time to implement. On the other hand a reconfigurable device can be used to design a system without requiring the same design time and complexity compared to a full custom solution but being beaten in terms of performance. The main advantage of a reconfigurable system is its high flexibility, while its main disadvantage is the lack of a standard computing model. In this module we are presenting a first definition of reconfigurable computing, describing the rationale behind it and introducing how this field has been influenced by the introduction of the FPGAs.
What's included
5 videos4 readings2 quizzes
From the mid-1980s, reconfigurable computing has become a popular field due to the FPGA technology progress. An FPGA is a semiconductor device containing programmable logic components and programmable interconnects but no instruction fetch at run time, that is, FPGAs do not have a program counter. In most FPGAs, the logic components can be programmed to duplicate the functionality of basic logic gates or functional Intellectual Properties (IPs). FPGAs also include memory elements composed of simple flip-flops or more complex blocks of memories. Hence, FPGA has made possible the dynamic execution and configuration of both hardware and software on a single chip. This module provides a detailed description of FPGA technologies starting from a general description down to the discussion on the low-level configuration details of these devices, to the bitstream composition and the description of the configuration registers.
What's included
8 videos3 readings2 quizzes
FPGA design tools must provide a design environment based on digital design concepts and components (gates, flip-flops, MUXs, etc.). They must hide the complexities of placement, routing and bitstream generation from the user. This module is not going through these steps in details, an entire course will be needed just for this, but it is important at least to have an idea of what it is happening behind the scene to better understand the complexity of the processes carried out by the tools you are going to use. Within this context, this module guides you through a simple example, which is abstracting the complexity of the underlying FPGA, starting from the description of the circuit you may be willing to implement to the bitstream used to configure the FPGA.
What's included
6 videos1 reading2 quizzes
Instructor
Offered by
Recommended if you're interested in Design and Product
Politecnico di Milano
University of Colorado System
Technion - Israel Institute of Technology
École Polytechnique
Why people choose Coursera for their career
Learner reviews
Showing 3 of 24
24 reviews
- 5 stars
68%
- 4 stars
24%
- 3 stars
4%
- 2 stars
4%
- 1 star
0%
New to Design and Product? Start here.
Open new doors with Coursera Plus
Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription
Advance your career with an online degree
Earn a degree from world-class universities - 100% online
Join over 3,400 global companies that choose Coursera for Business
Upskill your employees to excel in the digital economy
Frequently asked questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.