Peking University
生物信息学: 导论与方法
Peking University

生物信息学: 导论与方法

Taught in Chinese (Simplified)

20,196 already enrolled

Course

Gain insight into a topic and learn the fundamentals

Ge Gao 高歌, Ph.D.
Liping Wei 魏丽萍, Ph.D.

Instructors: Ge Gao 高歌, Ph.D.

4.8

(187 reviews)

25 hours to complete
3 weeks at 8 hours a week
Flexible schedule
Learn at your own pace

Details to know

Shareable certificate

Add to your LinkedIn profile

Assessments

13 quizzes

See how employees at top companies are mastering in-demand skills

Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 14 modules in this course

欢迎选学“生物信息学:导论与方法”网上课程!完成本模块的课程后你将可以:熟悉生物信息学的基本概念;了解生物信息这一年轻领域的历史;体会生物信息学的迅猛发展。课程补充材料可以加深你对课程讲座内容的理解,虽然小测和考试对这些内容不作要求。

What's included

4 videos2 readings1 quiz

完成本模块的课程后你将可以: 掌握基于动态规划编程思想的序列比对算法; 区分Needleman-Wunsch全局比对算法和Smith-Waterman局部比对算法; 了解空位罚分背后的原理和计算算法的复杂度将帮助你在你自己的研究中应用现有的生物信息学工具; 你还可以一睹Smith-Waterman算法的发明人Michael Waterman博士的风采。

What's included

8 videos2 readings1 quiz

完成本模块的课程后你将可以:熟悉序列数据库搜索和最常见的序列数据库;领略BLAST背后算法的奥妙;掌握日后在你自己的科研项目中调节BLAST参数的方法。

What's included

3 videos2 readings1 quiz

完成本模块的课程后你将可以:了解状态转移、马尔科夫链、马尔科夫模型的基本概念;亲手完成一个隐马尔科夫模型;利用隐马尔可夫模型在一个实际的生物学问题中作出预测。

What's included

7 videos2 readings1 quiz

完成本模块的课程后你将可以:描述新一代测序的特点;了解你得到的NGS变异结果是用哪些序列回帖和变异鉴定方法完成的;亲历NGS数据分析流程,体会其中生物信息工具在NGS数据分析中的应用。本模块是模块7的先修模块。

What's included

7 videos2 readings1 quiz

完成本模块的课程后你将可以:了解什么是变异功能预测和如何进行变异功能预测;在你得到一些可能的变异位点时学会利用变异数据库解决自己的研究问题;了解变异预测工具(SIFT,Polyphen和SAPRED等)背后的机理差异并会在自己的研究课题中按需应用这些工具。

What's included

6 videos2 readings1 quiz

What's included

1 quiz

完成本模块的课程后你将可以:了解转录组数据是如何产生的;掌握转录组分析中的重要计算方法;体验RNA-seq的数据分析流程;本模块是模块9的先修模块。

What's included

9 videos2 readings1 quiz

完成本模块的课程后你将可以:掌握从转录组数据中分析非编码RNA的方法;掌握从NGS数据中鉴定长非编码RNA(lncRNA)并预测其功能的方法。

What's included

5 videos2 readings1 quiz

完成本模块的课程后你将可以:了解本体论和基因本体轮等重要定义;了解KEGG通路数据库;了解GO的注释消息;在药物成瘾研究中学会使用KOBAS进行通路分析。

What's included

8 videos2 readings1 quiz

完成本模块的课程后你将可以:高屋建瓴的去了解最重要的生物信息资源(生物信息数据库和软件工具等);对NCBI, EBI, UCSC 基因组浏览器这样集中型的生物信息资源与各种独立的生物信息资源的概况有广泛的了解和认识;将你的研究内容和相关生物信息资源联系在一起。

What's included

6 videos1 reading1 quiz

完成本案例模块的课程后你将可以:体验生物信息数据、方法和分析是如何解决一个重要的演化问题的;领略物种特异性新基因的起源、演化、功能研究和分析方法;和享誉全球的新基因研究泰斗——芝加哥大学龙漫远教授一起学习建立系统发育树(选学)。

What's included

5 videos2 readings1 quiz

完成本案例模块的课程后你将可以:亲历生物信息学方法对DNA甲基化酶的功能和演化的研究;与中科院院士、同济大学校长裴刚教授一起分享科研经历和对网络开放课程的哲思。

What's included

5 videos1 reading

What's included

1 quiz

Instructors

Instructor ratings
4.9 (12 ratings)
Ge Gao 高歌, Ph.D.
Peking University
2 Courses62,815 learners
Liping Wei 魏丽萍, Ph.D.
Peking University
2 Courses62,815 learners

Offered by

Recommended if you're interested in Health Informatics

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

Showing 3 of 187

4.8

187 reviews

  • 5 stars

    79.14%

  • 4 stars

    18.18%

  • 3 stars

    2.13%

  • 2 stars

    0%

  • 1 star

    0.53%

GG
4

Reviewed on Feb 15, 2016

RD
5

Reviewed on Jan 2, 2017

FF
5

Reviewed on Oct 2, 2015

New to Health Informatics? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions