
University of Pittsburgh
Skills you'll gain: Statistical Analysis, NumPy, Probability Distribution, Matplotlib, Statistics, Pandas (Python Package), Data Science, Probability & Statistics, Probability, Statistical Modeling, Predictive Modeling, Data Analysis, Linear Algebra, Predictive Analytics, Statistical Methods, Mathematics and Mathematical Modeling, Applied Mathematics, Python Programming, Machine Learning, Logical Reasoning
Build toward a degree
Beginner · Specialization · 1 - 3 Months

University of California, Santa Cruz
Skills you'll gain: Bayesian Statistics, Time Series Analysis and Forecasting, Statistical Inference, Statistical Methods, R Programming, Forecasting, Probability & Statistics, Statistical Modeling, Technical Communication, Data Presentation, Probability, Statistics, Statistical Software, Probability Distribution, Statistical Analysis, Data Analysis, Markov Model, Model Evaluation, R (Software), Data Science
Intermediate · Specialization · 3 - 6 Months

Duke University
Skills you'll gain: Regression Analysis, R (Software), Data Analysis Software, Statistical Analysis, R Programming, Statistical Modeling, Statistical Inference, Correlation Analysis, Model Evaluation, Exploratory Data Analysis, Mathematical Modeling, Statistics, Predictive Modeling, Probability & Statistics
Beginner · Course · 1 - 4 Weeks

Skills you'll gain: Bayesian Statistics, Descriptive Statistics, Statistical Hypothesis Testing, Statistical Inference, Sampling (Statistics), Data Modeling, Statistics, Probability & Statistics, Statistical Analysis, Statistical Methods, Statistical Modeling, Marketing Analytics, Tableau Software, Data Analysis, Spreadsheet Software, Analytics, Time Series Analysis and Forecasting, Regression Analysis
Beginner · Course · 1 - 3 Months

Johns Hopkins University
Skills you'll gain: Statistical Hypothesis Testing, Sampling (Statistics), Regression Analysis, Bayesian Statistics, Statistical Analysis, Probability & Statistics, Statistical Inference, Statistical Methods, Statistical Modeling, Linear Algebra, Probability, Probability Distribution, R Programming, Biostatistics, Data Science, Statistics, Mathematical Modeling, Data Analysis, Data Modeling, Applied Mathematics
Advanced · Specialization · 3 - 6 Months

Johns Hopkins University
Skills you'll gain: Regression Analysis, Statistical Analysis, Statistical Modeling, Logistic Regression, Data Analysis, Model Evaluation, Probability & Statistics, Statistical Inference
Mixed · Course · 1 - 4 Weeks

University of Pittsburgh
Skills you'll gain: Probability Distribution, Data Science, Probability & Statistics, Predictive Analytics, Probability, Statistical Modeling, Data Analysis, Regression Analysis, Logistic Regression, Statistical Analysis, Statistical Methods, Statistical Machine Learning, Bayesian Statistics, Statistical Inference, Feature Engineering, Applied Mathematics, Python Programming, Machine Learning, Algorithms
Build toward a degree
Beginner · Course · 1 - 4 Weeks

University of Pittsburgh
Skills you'll gain: NumPy, Matplotlib, Linear Algebra, Pandas (Python Package), Data Manipulation, Applied Mathematics, Data Visualization, Python Programming, Data Analysis, Data Science, Regression Analysis, Data Visualization Software, Mathematics and Mathematical Modeling, Probability & Statistics, Statistics, Numerical Analysis, Mathematical Modeling, Machine Learning, Computational Logic, Logical Reasoning
Build toward a degree
Beginner · Course · 1 - 4 Weeks

Dartmouth College
Skills you'll gain: Classification Algorithms
Build toward a degree
Intermediate · Course · 1 - 3 Months

University of Colorado Boulder
Skills you'll gain: Statistical Modeling, R Programming, Data Analysis, Data Ethics, Statistical Methods, Regression Analysis, Predictive Modeling, Mathematical Modeling, Machine Learning, Logistic Regression, Statistical Inference, Model Evaluation, Probability Distribution, Linear Algebra, Calculus
Build toward a degree
Intermediate · Course · 1 - 4 Weeks

Illinois Tech
Skills you'll gain: Statistical Inference, Regression Analysis, R Programming, Statistical Analysis, Statistical Modeling, R (Software), Data Science, Logistic Regression, Data Analysis, Probability & Statistics, Linear Algebra
Build toward a degree
Intermediate · Course · 1 - 4 Weeks

Skills you'll gain: Regression Analysis, Logistic Regression, Statistical Hypothesis Testing, Data Analysis, Advanced Analytics, Statistical Analysis, Correlation Analysis, Analytical Skills, Business Analytics, Statistical Modeling, Model Evaluation, Variance Analysis, Predictive Modeling, Machine Learning, Python Programming
Advanced · Course · 1 - 3 Months
Bayesian Linear Regression is a statistical technique incorporating Bayesian methods into linear regression. It differs from traditional linear regression by providing not only an estimate for the regression coefficients but also a probability distribution, which gives a range of values that the coefficients can take based on the data. This allows for a more comprehensive understanding of the uncertainty and variability associated with the model's predictions.
In building Bayesian linear regression skills, you need to understand the principles of Bayesian statistics, including concepts like prior and posterior distributions, likelihood, and conjugate priors. You should also be familiar with linear regression and how it models relationships between variables.
Skills in programming languages that support statistical modeling, such as Python or R, would be beneficial. You would also need to learn how to interpret the results of a Bayesian linear regression, including the posterior distributions of the coefficients, and how to use these results to make predictions.
Moreover, understanding how to choose appropriate priors and how to validate and compare models using techniques like cross-validation or Bayesian information criterion (BIC) would be crucial.
Overall, Bayesian Linear Regression offers a more nuanced and probabilistic approach to linear modeling, which can be particularly useful in situations where uncertainty needs to be quantified.
Data Scientist: They use Bayesian Linear Regression to make predictions and decisions based on data analysis.
Statisticians: They use this method to analyze and interpret complex data to help businesses make decisions.
Machine Learning Engineer: They use Bayesian methods to build predictive models.
Quantitative Analyst: They use Bayesian Linear Regression in financial forecasting and risk management.
Research Scientist: They use this method in various scientific research to analyze data and make predictions.
Business Analyst: They use Bayesian Linear Regression to analyze business data and make strategic decisions.
Market Research Analyst: They use this method to analyze market trends and forecast future trends.
Bioinformaticians: They use Bayesian Linear Regression in analyzing biological data.
Actuary: They use this method in risk assessment and financial forecasting.
To learn Bayesian Linear Regression on Coursera, search for courses that cover Bayesian statistics or advanced statistical modeling. Please choose a course that includes the theoretical underpinnings of Bayesian inference and its applications in linear regression. Ensure it offers practical exercises using software like R, Python, or MATLAB, often integrated into such courses for hands-on learning. Engage with course materials, participate in discussions, and complete assignments or projects focusing on Bayesian approaches to regression to solidify your skills.