Large Language Models courses can help you learn natural language processing, text generation techniques, and model evaluation methods. You can build skills in fine-tuning models, understanding tokenization, and implementing ethical AI practices. Many courses introduce tools like TensorFlow and PyTorch, along with libraries such as Hugging Face Transformers, that support developing and deploying AI applications that leverage large language models.

Google Cloud
Skills you'll gain: Large Language Modeling, Natural Language Processing, Generative Model Architectures, Transfer Learning, Embeddings
Advanced · Course · 1 - 4 Weeks

Johns Hopkins University
Skills you'll gain: Statistical Hypothesis Testing, Sampling (Statistics), Regression Analysis, Bayesian Statistics, Statistical Analysis, Probability & Statistics, Statistical Inference, Statistical Methods, Statistical Modeling, Linear Algebra, Probability, Probability Distribution, R Programming, Biostatistics, Data Science, Statistics, Mathematical Modeling, Data Analysis, Data Modeling, Applied Mathematics
Advanced · Specialization · 3 - 6 Months

University of Colorado Boulder
Skills you'll gain: Vision Transformer (ViT), Recurrent Neural Networks (RNNs), Multimodal Prompts, Artificial Intelligence and Machine Learning (AI/ML), Embeddings, Digital Signal Processing, Transfer Learning
Build toward a degree
Advanced · Course · 1 - 4 Weeks

Skills you'll gain: Large Language Modeling, LLM Application, Model Deployment, AI Enablement, Transfer Learning, Prompt Engineering, Generative AI, Model Evaluation, Deep Learning, Natural Language Processing, Recurrent Neural Networks (RNNs), Responsible AI, Scalability, Machine Learning, Performance Tuning, Systems Integration
Advanced · Course · 3 - 6 Months

Skills you'll gain: Data Storytelling, Data Visualization, Data Ethics, Exploratory Data Analysis, Sampling (Statistics), Data Visualization Software, Feature Engineering, Regression Analysis, Descriptive Statistics, Logistic Regression, Statistical Hypothesis Testing, Model Evaluation, Data Analysis, Tableau Software, Data Science, Statistical Analysis, Machine Learning, Object Oriented Programming (OOP), Interviewing Skills, Python Programming
Build toward a degree
Advanced · Professional Certificate · 3 - 6 Months

University of California, Irvine
Skills you'll gain: Video Production, Grammar, Peer Review, Writing, Editing, Proofreading, English Language, Language Competency, Vocabulary, Language Learning, Creativity
Advanced · Specialization · 3 - 6 Months

Duke University
Skills you'll gain: MLOps (Machine Learning Operations), Model Deployment, Cloud Deployment, Pandas (Python Package), AWS SageMaker, NumPy, Microsoft Azure, Hugging Face, Responsible AI, Data Manipulation, Exploratory Data Analysis, Containerization, DevOps, Cloud Computing, Python Programming, Machine Learning, GitHub, Big Data, Data Management, Data Analysis
Advanced · Specialization · 3 - 6 Months
Skills you'll gain: Model Deployment, MLOps (Machine Learning Operations), Data Preprocessing, Exploratory Data Analysis, Logistic Regression, Statistical Machine Learning, Model Evaluation, Supervised Learning, Decision Tree Learning, Probability & Statistics, Statistics, Machine Learning Software, Classification And Regression Tree (CART), Workflow Management, Predictive Modeling, Random Forest Algorithm, Feature Engineering, SAS (Software), Machine Learning, Applied Machine Learning
Advanced · Professional Certificate · 3 - 6 Months

AI CERTs
Skills you'll gain: Responsible AI, Tensorflow, PyTorch (Machine Learning Library), Internet Of Things, Real Time Data, Natural Language Processing, Artificial Intelligence and Machine Learning (AI/ML), Telecommunications, Artificial Intelligence, Emerging Technologies, Generative AI, Wireless Networks, Generative AI Agents, Network Performance Management, Network Architecture, Digital Communications, Network Protocols, Computer Networking, System Design and Implementation, Communication
Advanced · Specialization · 1 - 3 Months

Skills you'll gain: Data Modeling, Stakeholder Engagement, Database Design, Dashboard, Business Intelligence, Extract, Transform, Load, Tableau Software, Data Warehousing, Data Pipelines, Interactive Data Visualization, Business Reporting, Data-Driven Decision-Making, Data Visualization, Interviewing Skills, Applicant Tracking Systems, Business Process, AI Enablement, Business Analysis, Data Analysis, SQL
Build toward a degree
Advanced · Professional Certificate · 3 - 6 Months

Skills you'll gain: Feature Engineering, Model Deployment, Data Visualization, Data Ethics, Exploratory Data Analysis, Model Evaluation, Unsupervised Learning, Data Presentation, Tensorflow, Dimensionality Reduction, MLOps (Machine Learning Operations), Probability Distribution, Apache Spark, Statistical Hypothesis Testing, Supervised Learning, Data Pipelines, Design Thinking, Data Science, Machine Learning, Python Programming
Advanced · Specialization · 3 - 6 Months

University of Colorado Boulder
Skills you'll gain: Bash (Scripting Language), Distributed Computing, Scalability, Software Architecture, File I/O, Big Data, Operating Systems, File Systems, Cloud Development, Scripting, Command-Line Interface, C and C++, Performance Tuning, Linux, Programming Principles, Computer Architecture, Communication Systems
Advanced · Specialization · 3 - 6 Months
Large language models (LLMs) are advanced artificial intelligence systems designed to understand and generate human-like text. They utilize vast amounts of data and sophisticated algorithms to learn patterns in language, enabling them to perform a variety of tasks, such as translation, summarization, and content creation. The importance of LLMs lies in their ability to enhance communication, automate processes, and provide insights across numerous fields, including education, healthcare, and business. As organizations increasingly rely on data-driven decision-making, understanding LLMs becomes essential for leveraging their capabilities effectively.‎
Careers in large language models are diverse and growing rapidly. You might consider roles such as AI Research Scientist, Machine Learning Engineer, Data Scientist, or Natural Language Processing (NLP) Specialist. These positions often involve developing and implementing LLMs for various applications, including chatbots, recommendation systems, and content generation tools. Additionally, roles in product management and AI ethics are emerging as organizations seek to responsibly integrate LLMs into their operations. With the right skills and knowledge, you can position yourself for a rewarding career in this dynamic field.‎
To work effectively with large language models, you should focus on acquiring a blend of technical and analytical skills. Key areas include programming languages such as Python, familiarity with machine learning frameworks like TensorFlow or PyTorch, and a solid understanding of natural language processing concepts. Additionally, knowledge of data handling, model evaluation, and ethical considerations in AI is crucial. Courses that cover these topics can help you build a strong foundation and prepare you for practical applications in the field.‎
There are several excellent online courses available for learning about large language models. Notable options include the Large Language Models Specialization, which provides a comprehensive overview of LLMs, and the Generative AI and Large Language Models course, focusing on practical applications. For those interested in a structured learning path, the Quick Start Guide to Large Language Models (LLMs) Specialization is also a great choice.‎
Yes. You can start learning large language models on Coursera for free in two ways:
If you want to keep learning, earn a certificate in large language models, or unlock full course access after the preview or trial, you can upgrade or apply for financial aid.‎
To learn about large language models, start by identifying your current skill level and areas of interest. You can begin with introductory courses, such as the Introduction to Large Language Models, which provide a solid foundation. As you progress, consider more specialized courses that focus on specific applications or technologies. Engage with hands-on projects to apply what you learn, and participate in online communities to connect with others in the field. This approach will help reinforce your understanding and build your confidence.‎
Courses on large language models typically cover a range of topics, including the fundamentals of natural language processing, the architecture of LLMs, training techniques, and evaluation methods. You may also explore practical applications, such as building chatbots, content generation, and ethical considerations in AI. Advanced courses might explore into specific frameworks and tools used in the industry, providing you with the skills needed to implement LLMs effectively.‎
For training and upskilling employees or the workforce in large language models, consider courses like the Building Production-Ready Apps with Large Language Models course, which focuses on practical implementation. Additionally, the H2O AI Large Language Models (LLMs) - Level 1 course provides foundational knowledge that can be beneficial for teams looking to integrate LLMs into their projects. These courses can help organizations enhance their capabilities and stay competitive in the evolving landscape of AI.‎