Wesleyan University

Machine Learning for Data Analysis

Jen Rose
Lisa Dierker

Instructors: Jen Rose

45,452 already enrolled

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
4.2

(323 reviews)

10 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
95%
Most learners liked this course
Gain insight into a topic and learn the fundamentals.
4.2

(323 reviews)

10 hours to complete
3 weeks at 3 hours a week
Flexible schedule
Learn at your own pace
95%
Most learners liked this course

Details to know

Shareable certificate

Add to your LinkedIn profile

Taught in English

See how employees at top companies are mastering in-demand skills

Placeholder

Build your subject-matter expertise

This course is part of the Data Analysis and Interpretation Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate
Placeholder
Placeholder

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV

Share it on social media and in your performance review

Placeholder

There are 4 modules in this course

In this session, you will learn about decision trees, a type of data mining algorithm that can select from among a large number of variables those and their interactions that are most important in predicting the target or response variable to be explained. Decision trees create segmentations or subgroups in the data, by applying a series of simple rules or criteria over and over again, which choose variable constellations that best predict the target variable.

What's included

7 videos15 readings1 peer review

In this session, you will learn about random forests, a type of data mining algorithm that can select from among a large number of variables those that are most important in determining the target or response variable to be explained. Unlike decision trees, the results of random forests generalize well to new data.

What's included

4 videos4 readings1 peer review

Lasso regression analysis is a shrinkage and variable selection method for linear regression models. The goal of lasso regression is to obtain the subset of predictors that minimizes prediction error for a quantitative response variable. The lasso does this by imposing a constraint on the model parameters that causes regression coefficients for some variables to shrink toward zero. Variables with a regression coefficient equal to zero after the shrinkage process are excluded from the model. Variables with non-zero regression coefficients variables are most strongly associated with the response variable. Explanatory variables can be either quantitative, categorical or both. In this session, you will apply and interpret a lasso regression analysis. You will also develop experience using k-fold cross validation to select the best fitting model and obtain a more accurate estimate of your model’s test error rate. To test a lasso regression model, you will need to identify a quantitative response variable from your data set if you haven’t already done so, and choose a few additional quantitative and categorical predictor (i.e. explanatory) variables to develop a larger pool of predictors. Having a larger pool of predictors to test will maximize your experience with lasso regression analysis. Remember that lasso regression is a machine learning method, so your choice of additional predictors does not necessarily need to depend on a research hypothesis or theory. Take some chances, and try some new variables. The lasso regression analysis will help you determine which of your predictors are most important. Note also that if you are working with a relatively small data set, you do not need to split your data into training and test data sets. The cross-validation method you apply is designed to eliminate the need to split your data when you have a limited number of observations.

What's included

5 videos3 readings1 peer review

Cluster analysis is an unsupervised machine learning method that partitions the observations in a data set into a smaller set of clusters where each observation belongs to only one cluster. The goal of cluster analysis is to group, or cluster, observations into subsets based on their similarity of responses on multiple variables. Clustering variables should be primarily quantitative variables, but binary variables may also be included. In this session, we will show you how to use k-means cluster analysis to identify clusters of observations in your data set. You will gain experience in interpreting cluster analysis results by using graphing methods to help you determine the number of clusters to interpret, and examining clustering variable means to evaluate the cluster profiles. Finally, you will get the opportunity to validate your cluster solution by examining differences between clusters on a variable not included in your cluster analysis. You can use the same variables that you have used in past weeks as clustering variables. If most or all of your previous explanatory variables are categorical, you should identify some additional quantitative clustering variables from your data set. Ideally, most of your clustering variables will be quantitative, although you may also include some binary variables. In addition, you will need to identify a quantitative or binary response variable from your data set that you will not include in your cluster analysis. You will use this variable to validate your clusters by evaluating whether your clusters differ significantly on this response variable using statistical methods, such as analysis of variance or chi-square analysis, which you learned about in Course 2 of the specialization (Data Analysis Tools). Note also that if you are working with a relatively small data set, you do not need to split your data into training and test data sets.

What's included

6 videos3 readings1 peer review

Instructors

Instructor ratings
4.3 (17 ratings)
Jen Rose
Wesleyan University
4 Courses92,393 learners

Offered by

Recommended if you're interested in Machine Learning

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Learner reviews

Showing 3 of 323

4.2

323 reviews

  • 5 stars

    56.65%

  • 4 stars

    25.69%

  • 3 stars

    7.73%

  • 2 stars

    4.02%

  • 1 star

    5.88%

MS
4

Reviewed on Mar 21, 2016

MK
4

Reviewed on Apr 26, 2020

AP
4

Reviewed on Jan 5, 2018

New to Machine Learning? Start here.

Placeholder

Open new doors with Coursera Plus

Unlimited access to 7,000+ world-class courses, hands-on projects, and job-ready certificate programs - all included in your subscription

Advance your career with an online degree

Earn a degree from world-class universities - 100% online

Join over 3,400 global companies that choose Coursera for Business

Upskill your employees to excel in the digital economy

Frequently asked questions