About this Course
45,341 recent views

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Approx. 31 hours to complete

Suggested: We estimate the workload for this course to be about 11 weeks of study with 3 to 4 hours/week, depending on your usage of the optional material. ...

English

Subtitles: English

100% online

Start instantly and learn at your own schedule.

Flexible deadlines

Reset deadlines in accordance to your schedule.

Approx. 31 hours to complete

Suggested: We estimate the workload for this course to be about 11 weeks of study with 3 to 4 hours/week, depending on your usage of the optional material. ...

English

Subtitles: English

Syllabus - What you will learn from this course

Week
1
2 hours to complete

Matter and forces, measuring and counting

13 videos (Total 88 min), 6 quizzes
13 videos
1.1 Matter11m
1.2 Forces10m
1.2a Natural units (optional)2m
1.2b Special relativity and four-vectors (optional)7m
1.2c Virtual particles (optional)2m
1.3 Probability and cross section13m
1.3a Attenuation of a photon beam (optional)1m
1.4 Rutherford experiment7m
1.4a Rutherford cross section (optional)3m
1.4b Counting rate Rutherford (optional)2m
1.5 Quantum scattering10m
1.6 Rutherford experiment in practice (optional)13m
6 practice exercises
1.1 Matter10m
1.2 Forces6m
1.3 Probability and cross section8m
1.4 Rutherford experiment8m
1.5 Quantum scattering6m
Graded quiz for Module 110m
Week
2
4 hours to complete

Nuclear physics

15 videos (Total 142 min), 1 reading, 10 quizzes
15 videos
2.2 Nuclear size and spin9m
2.3 Models of nuclear structure10m
2.3a QCD and nuclear force (optional)2m
2.4 Radioactivity: alpha decay9m
2.4a Energy of alpha particles (optional)1m
2.5 Beta and gamma decay8m
2.5a Exponential decay law (optional)1m
2.6 Radioactivity in practice (optional)8m
2.7 Radiocarbon dating and NMR imaging8m
2.8 Nuclear fission11m
2.9 Nuclear power6m
2.10 Nuclear fusion, the Sun and ITER8m
2.11 The tokamak of EPFL (optional)24m
2.12 The Beznau nuclear power plant (optional)20m
1 reading
2.4 Radioactivity: alpha decay10m
10 practice exercises
2.1 Nuclear mass and binding energy8m
2.2 Nuclear size and spin8m
2.3 Models of nuclear structure6m
2.4 Radioactivity: alpha decay6m
2.5 Beta and gamma decay6m
2.7 Radiocarbon dating and NMR imaging6m
2.8 Nuclear fission6m
2.9 Nuclear power6m
2.10 Nuclear fusion, the Sun and ITER8m
Graded quiz for Module 210m
Week
3
3 hours to complete

Accelerators and detectors

14 videos (Total 99 min), 3 readings, 10 quizzes
14 videos
3.1a Cyclotron frequency (optional)2m
3.2 Acceleration and focalisation6m
3.2a The CERN accelerator complex (optional)3m
3.3 Components of the LHC (optional)14m
3.4 Heavy particles in matter6m
3.5 Light particles in matter4m
3.6 Photons in matter8m
3.7 Ionisation detectors7m
3.8 Semiconductor detectors7m
3.9 Scintillation and Cherenkov detectors12m
3.10 Spectrometers and calorimeters8m
3.10a Particle detection with ATLAS (optional)3m
3.11 Particle detectors at DPNC (optional)6m
3 readings
3.9 Scintillation and Cherenkov detectors10m
3.10 Spectrometers and calorimeters10m
3.11 Particle detectors at DPNC (optional)10m
10 practice exercises
3.1 Principles of particle acceleration6m
3.2 Acceleration and focalisation8m
3.4 Heavy particles in matter6m
3.5 Light particles in matter6m
3.6 Photons in matter6m
3.7 Ionisation detectors4m
3.8 Semiconductor detectors4m
3.9 Scintillation and Cherenkov detectors8m
3.10 Spectrometers and calorimeters4m
Graded quiz for Module 310m
Week
4
2 hours to complete

Electromagnetic interactions

7 videos (Total 54 min), 6 quizzes
7 videos
4.1a How to construct a Feynman diagram (optional)4m
4.2 Electromagnetic scattering13m
4.3 Spin and magnetic moment6m
4.3a Motion in a Penning Trap2m
4.4 Compton scattering and pair annihilation11m
4.5 Electron-positron annihilation8m
6 practice exercises
4.1 Reminder: Describing particle interactions6m
4.2 Electromagnetic scattering8m
4.3 Spin and magnetic moment6m
4.4 Compton scattering and pair annihilation6m
4.5 Electron-positron annihilation6m
Graded quiz for Module 46m
4.5
104 ReviewsChevron Right

62%

got a tangible career benefit from this course

29%

got a pay increase or promotion

Top reviews from Particle Physics: an Introduction

By MHAug 5th 2017

Challenging at first for someone with a non-traditional academic background, but thoroughly enjoyable and worth completing, if nothing but for the personal satisfaction of getting through it!

By EPApr 23rd 2017

Very interesting course. Quite difficult to pass week 6 due to a question on w boson quark transformation. Couldnt find answers in sylabus. Maybe just me. Overall excellant course.

Instructors

Avatar

Martin Pohl

Professeur ordinaire
Département de physique nucléaire et corpusculaire
Avatar

Anna Sfyrla

Assistant Professor
Nuclear and Particle Physics

About University of Geneva

Founded in 1559, the University of Geneva (UNIGE) is one of Europe's leading universities. Devoted to research, education and dialogue, the UNIGE shares the international calling of its host city, Geneva, a centre of international and multicultural activities with a venerable cosmopolitan tradition....

Frequently Asked Questions

  • Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

  • When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

More questions? Visit the Learner Help Center.