Chevron Left
Back to Regression Models

Learner Reviews & Feedback for Regression Models by Johns Hopkins University

4.4
stars
3,238 ratings
553 reviews

About the Course

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....

Top reviews

KA
Dec 16, 2017

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.

BA
Jan 31, 2017

It really helped me to have a better understanding of these Regression Models. However, I've noticed that there is a video recording repeated: Week 3, Model Selection. Part 3 is included in Part 2.

Filter by:

301 - 325 of 533 Reviews for Regression Models

By William A

May 16, 2018

Loved it

By Maggie L

Aug 27, 2017

Love it!

By Charles-Antoine d T

Oct 29, 2017

amazing

By Fernando M

Sep 4, 2017

Love it

By UDBODH

May 14, 2016

Had fun

By Ricardo A M C

Jan 22, 2021

thanks

By Jeff L J D

Nov 13, 2020

Thanks

By Adán H

Sep 13, 2017

thanks

By Fredy A

Jun 5, 2016

Great!

By Rodrigo O

Apr 16, 2019

great

By Rafael L G

Jun 1, 2017

Great

By Pratikchha N

May 31, 2016

great

By Dror D

Oct 5, 2018

Good

By Ganapathi N K

May 6, 2018

Good

By Yi-Yang L

May 10, 2017

Good

By Larry G

Feb 7, 2017

Nice

By Sidra A

Apr 13, 2021

grt

By Amit K R

Nov 21, 2017

ok

By Ganesh P

Mar 12, 2018

V

By Priyanka V I

Aug 26, 2017

.

By Andrea F

Apr 19, 2017

B

By Benjamin G J

Jan 5, 2016

This is the best course of the bunch so far. These courses are really promising -- I've learned a lot from them and they probably have everything they could have at the price - but I'm leaving just one star off because I feel very strongly that some effort could really go a long way to making a better language map of these courses. A person leaves this course, and even more so the inference course, not being very clear one where their new capabilities lie in the spectrum, and without the strongest sense of how to experiment with linear models.

One case in point of the the huge strengths and a slight weakness of this course -- Professor Caffo mentions the wonderfully tantalizing fact that the application of linear models can get you most of the way to the top of a Kaggle competition. That feels true, I trust him, and it's really cool. But it would be SO. MUCH. COOLER. with an article showing a linear model attacking that kind of problem.

By John D M

Apr 10, 2019

Overall an excellent course, but there were some issues with the wrong function being specified in one quiz (Q3q6) and the wrong answer in another. Apparently it has been that way for years, according to the forum. The quality of the lectures was very high and the information interesting, so compliments to Dr. Brian Caffo on that. However, the estimated time for completion of each week is ridiculously short compared to reality. Five hours? For me it was more like 20 hours, and more if I did all the Swirl exercises. Such low-balling on the time estimates is typical of the Data Science stream. The final project is given as 2 hours but it was closer to 15 for me. i wish Coursera would go back to the stream model where you could bump yourself to the next intake. That is much less stressful for busy working people like me.

By Amine A

Jan 25, 2021

I found this part of the course one of the hardest. But at the same time, probably the best course about linear regression I have ever seen. Is it difficult? Yes! Is it super exciting? Well... :) not necessarily. But I have come back to these course materials many times for a good reason. It's what you need to understand and use all the time. It is the absolute essential and necessary to know for any data scientist. While it might appear to be boring and basic compared to fancy deep learning models... trust me. It's not. It goes a long way in understanding what can be done with data. I am very grateful to the course instructors that they have spent their time and effort to make this course what it is. Please keep up the good work!

By Siying R

Aug 10, 2019

The lecture is pretty dry to me who had limited vocabulary in the field. It made me went out to find other easier lectures to help me understand. The lecture focus on explaining the basic concept of Regression Models and spend a big chunk of time to explain how the function works. I would prefer to have more time explaining what the numbers mean for the data. The questions in the quiz require us to understand the meaning of the data, so we know what function and number to apply. Maybe it is just me, finding it very challenging to see the connection between the lecture and the quiz.