• For Individuals
  • For Businesses
  • For Universities
  • For Governments
Degrees
Log In
Join for Free
  • Browse
  • Sequence Models

Results for "sequence models"


  • Status: Free Trial
    Free Trial
    D

    DeepLearning.AI

    Sequence Models

    Skills you'll gain: Natural Language Processing, Generative AI, Artificial Neural Networks, Tensorflow, Large Language Modeling, Artificial Intelligence and Machine Learning (AI/ML), PyTorch (Machine Learning Library), Deep Learning, Supervised Learning

    4.8
    Rating, 4.8 out of 5 stars
    ·
    31K reviews

    Intermediate · Course · 1 - 4 Weeks

  • Status: Preview
    Preview
    D

    DeepLearning.AI

    Generative AI with Large Language Models

    Skills you'll gain: Generative AI, Large Language Modeling, Prompt Engineering, PyTorch (Machine Learning Library), Python Programming, Applied Machine Learning, Scalability, Natural Language Processing, Responsible AI, Machine Learning, Reinforcement Learning, Performance Tuning

    4.8
    Rating, 4.8 out of 5 stars
    ·
    3.5K reviews

    Intermediate · Course · 1 - 4 Weeks

  • Status: New
    New
    D

    Duke University

    Data Modeling and Prediction with R

    Skills you'll gain: Data-Driven Decision-Making, Statistical Modeling, Predictive Modeling, Regression Analysis, R Programming, Data Analysis, Probability & Statistics, Statistical Hypothesis Testing, Statistical Inference, Statistical Analysis

    Beginner · Course · 1 - 4 Weeks

  • Status: Free Trial
    Free Trial
    D

    DeepLearning.AI

    Sequences, Time Series and Prediction

    Skills you'll gain: Tensorflow, Time Series Analysis and Forecasting, Keras (Neural Network Library), Deep Learning, Predictive Modeling, Artificial Neural Networks, Machine Learning Methods, Forecasting, Data Processing, Machine Learning

    4.7
    Rating, 4.7 out of 5 stars
    ·
    5.2K reviews

    Intermediate · Course · 1 - 4 Weeks

  • G

    Google Cloud

    Transformer Models and BERT Model

    Skills you'll gain: Large Language Modeling, Natural Language Processing, Generative Model Architectures, Artificial Neural Networks

    4.1
    Rating, 4.1 out of 5 stars
    ·
    124 reviews

    Advanced · Course · 1 - 4 Weeks

  • Status: Free Trial
    Free Trial
    G

    Google Cloud

    Introduction to Large Language Models

    Skills you'll gain: Large Language Modeling, Prompt Engineering, LLM Application, Generative AI, Prompt Patterns, Generative Model Architectures

    4.5
    Rating, 4.5 out of 5 stars
    ·
    1.2K reviews

    Beginner · Course · 1 - 4 Weeks

What brings you to Coursera today?

  • Status: Free Trial
    Free Trial
    D

    DeepLearning.AI

    Natural Language Processing with Sequence Models

    Skills you'll gain: Natural Language Processing, Artificial Neural Networks, PyTorch (Machine Learning Library), Deep Learning, Tensorflow, Text Mining, Machine Learning Methods

    4.5
    Rating, 4.5 out of 5 stars
    ·
    1.2K reviews

    Intermediate · Course · 1 - 4 Weeks

  • Status: Free Trial
    Free Trial
    D

    DeepLearning.AI

    Natural Language Processing with Attention Models

    Skills you'll gain: Natural Language Processing, PyTorch (Machine Learning Library), Artificial Intelligence and Machine Learning (AI/ML), Keras (Neural Network Library), Deep Learning, Tensorflow, Artificial Neural Networks

    4.4
    Rating, 4.4 out of 5 stars
    ·
    1.1K reviews

    Intermediate · Course · 1 - 4 Weeks

  • Status: Free
    Free
    D

    DeepLearning.AI

    How Diffusion Models Work

    Skills you'll gain: Generative AI, Generative Model Architectures, Jupyter, Prompt Engineering, Sampling (Statistics), Artificial Neural Networks, Algorithms

    4.6
    Rating, 4.6 out of 5 stars
    ·
    272 reviews

    Intermediate · Project · Less Than 2 Hours

  • Status: Free
    Free
    D

    DeepLearning.AI

    Embedding Models: From Architecture to Implementation

    Skills you'll gain: Generative AI, Large Language Modeling, Semantic Web, Natural Language Processing, Unsupervised Learning, Text Mining

    5
    Rating, 5 out of 5 stars
    ·
    6 reviews

    Beginner · Project · Less Than 2 Hours

  • Status: New
    New
    Status: Free
    Free
    D

    DeepLearning.AI

    Prompt Engineering for Vision Models

    Skills you'll gain: Prompt Engineering, Multimodal Prompts, Prompt Engineering Tools, Generative AI, Image Analysis, Computer Vision, AI Personalization, Applied Machine Learning

    Beginner · Project · Less Than 2 Hours

  • Status: Free Trial
    Free Trial
    I

    IBM

    Generative AI: Foundation Models and Platforms

    Skills you'll gain: Generative AI, Generative Model Architectures, OpenAI, Large Language Modeling, LLM Application, Prompt Engineering, Deep Learning, Responsible AI, Natural Language Processing

    4.7
    Rating, 4.7 out of 5 stars
    ·
    292 reviews

    Beginner · Course · 1 - 4 Weeks

Searches related to sequence models

natural language processing with sequence models
1234…205

In summary, here are 10 of our most popular sequence models courses

  • Sequence Models: DeepLearning.AI
  • Generative AI with Large Language Models: DeepLearning.AI
  • Data Modeling and Prediction with R: Duke University
  • Sequences, Time Series and Prediction: DeepLearning.AI
  • Transformer Models and BERT Model: Google Cloud
  • Introduction to Large Language Models: Google Cloud
  • Natural Language Processing with Sequence Models: DeepLearning.AI
  • Natural Language Processing with Attention Models: DeepLearning.AI
  • How Diffusion Models Work: DeepLearning.AI
  • Embedding Models: From Architecture to Implementation: DeepLearning.AI

Frequently Asked Questions about Sequence Models

Sequence models are a type of machine learning model specifically designed to deal with sequential data. They are widely used in various applications such as speech recognition, natural language processing, and time series analysis.

In simple terms, sequence models are adept at understanding and predicting patterns in sequences of data. They capture dependencies between data points by considering the order in which they occur. This allows them to make more accurate predictions or classifications based on the context and patterns they observe.

One popular example of a sequence model is the Recurrent Neural Network (RNN). RNNs process input data sequentially while maintaining an internal memory that takes into account past inputs. This memory enables them to incorporate information from previous data points, making them particularly powerful in tasks like sentiment analysis, machine translation, and speech synthesis.

Another commonly used sequence model is the Transformer model. Transformers are mainly used in natural language processing tasks and have gained popularity due to their ability to handle long-range dependencies efficiently. They use an attention mechanism to focus on different parts of the input sequence, allowing them to capture relationships between words and characters effectively.

Overall, sequence models are vital in analyzing and understanding sequential data, enabling users like you to uncover valuable insights and make informed decisions in various fields.‎

To effectively learn and work with sequence models, you need to acquire the following skills:

  1. Python Programming: Having a strong foundation in Python programming is essential as most sequence model frameworks, such as TensorFlow and PyTorch, are implemented in Python.

  2. Machine Learning: A good understanding of machine learning concepts, including supervised and unsupervised learning, is necessary to grasp the principles behind sequence models.

  3. Deep Learning: Since sequence models often rely on deep learning techniques, it's crucial to have knowledge of neural networks, backpropagation, optimization algorithms, and activation functions.

  4. Natural Language Processing (NLP): If you plan to work with text or language-based sequence models, gaining expertise in NLP techniques and tools, such as tokenization, word embeddings, and language modeling, is vital.

  5. Recurrent Neural Networks (RNN): Sequence models, such as LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit), are built on RNNs. Understanding the fundamentals of RNNs, their architecture, and training methods is essential.

  6. Time-Series Analysis: If you're dealing with time-dependent sequences, it's crucial to have a firm grasp of time-series analysis concepts, including autoregressive models, moving averages, and trend analysis.

  7. Data Preprocessing: Knowing how to preprocess and clean sequence data, handle missing values, and normalize or scale the data is a necessary skill for working with sequence models.

  8. Evaluation Metrics: Learning to assess the performance of your sequence models using appropriate evaluation metrics, such as accuracy, precision, recall, F1 score, or perplexity, is essential to validate your models effectively.

  9. Model Selection and Tuning: Gaining proficiency in selecting appropriate sequence model architectures, hyperparameter tuning, and regularization techniques will help you optimize the model's performance.

  10. Hands-on Practice: Finally, gaining practical experience by working on real-world sequence model projects or participating in coding exercises and competitions will help reinforce your skills and knowledge.

Remember, mastering sequence models is an iterative process, and continuous learning and staying up-to-date with advancements in the field will greatly contribute to your success.‎

With Sequence Models skills, you can open doors to various job opportunities. Some potential job roles that require expertise in Sequence Models include:

  1. Natural Language Processing (NLP) Engineer: As an NLP engineer, you will work on developing and refining models that can understand and generate human language, making computers more effective at understanding and communicating with humans.

  2. Machine Learning Engineer: Sequence Models are widely used in machine learning applications, so having these skills can help you excel in this role. You will work on developing and deploying machine learning models that make accurate predictions and decisions based on sequential data.

  3. Data Scientist: Sequence Models are valuable tools for analyzing and interpreting sequential data, such as time series or sequential text data. As a data scientist, you will use these models to gain insights, make predictions, and optimize processes based on various types of sequential data.

  4. AI Research Scientist: Mastery in Sequence Models enables you to contribute to cutting-edge research in the field of artificial intelligence. You can work on advancing the state-of-the-art by developing novel models, algorithms, and techniques for sequence analysis and generation.

  5. Chatbot Developer: Sequence Models are integral to building intelligent chatbots that can understand and respond to human queries and conversations. With this skill set, you can create conversational agents that interact with users in a natural and contextually relevant manner.

  6. Speech Recognition Engineer: In speech recognition, applying Sequence Models is crucial for accurately transcribing spoken language into written text. With sequence modeling skills, you can work on improving speech recognition systems used in virtual assistants, transcription services, and more.

  7. Recommender System Engineer: Sequence Models can be employed in recommender systems to suggest personalized and relevant items, such as products, articles, or movies, to users. Skills in this area enable you to work on building effective recommendation algorithms.

These are just a few examples of the many job opportunities available to individuals with Sequence Models skills. The applications of sequence modeling are extensive, making it a valuable expertise in numerous industries, including healthcare, finance, e-commerce, and more.‎

Sequence Models are best suited for individuals who have a strong foundation in mathematics and programming. These individuals should have a good understanding of concepts such as linear algebra, calculus, and probability theory. Additionally, they should have experience in programming languages such as Python and be familiar with libraries like TensorFlow or PyTorch.

Furthermore, individuals who are interested in natural language processing, speech recognition, machine translation, sentiment analysis, or any other task involving sequential data would find studying Sequence Models beneficial. These models are widely used in various fields, including finance, healthcare, marketing, and robotics.

Overall, individuals who are analytical, detail-oriented, and have a passion for solving complex problems using data-driven approaches would be well-suited for studying Sequence Models.‎

Here are some topics you can study that are related to Sequence Models:

  1. Recurrent Neural Networks (RNNs): RNNs are a type of artificial neural network designed for processing sequential data. You can study the theory behind RNNs, their architectures, and how they can be used for various applications.

  2. Long Short-Term Memory (LSTM) Networks: LSTMs are a type of RNN that excel at capturing long-term dependencies in sequential data. You can delve into how LSTMs work, understand their unique architecture, and explore their applications in tasks like natural language processing and speech recognition.

  3. Gated Recurrent Units (GRUs): GRUs are another variant of RNNs that are computationally efficient compared to LSTMs while still capturing essential information. You can learn about GRU architecture, compare them to LSTMs, and understand how they can be applied in sequence modeling tasks.

  4. Sequence-to-Sequence Models: These models are widely used for tasks like machine translation, text summarization, and speech recognition. You can study the encoder-decoder architecture of sequence-to-sequence models, attention mechanisms, and techniques for improving their performance.

  5. Transformer Models: Transformers have revolutionized the field of natural language processing and sequence modeling. You can dive into the transformer architecture, attention mechanisms, self-attention, and learn how they have outperformed traditional RNN-based models in various tasks.

  6. Applications of Sequence Models: Sequence models find applications in various domains - from natural language processing and speech recognition to music generation and time series forecasting. You can explore case studies and real-world applications of sequence models in different fields.

Keep in mind that these topics are just a starting point, and there is a vast amount of research and practical applications related to sequence models. You can further explore these topics through online courses, tutorials, academic papers, and by experimenting with practical implementation.‎

Online Sequence Models courses offer a convenient and flexible way to enhance your knowledge or learn new Sequence models are a type of machine learning model specifically designed to deal with sequential data. They are widely used in various applications such as speech recognition, natural language processing, and time series analysis.

In simple terms, sequence models are adept at understanding and predicting patterns in sequences of data. They capture dependencies between data points by considering the order in which they occur. This allows them to make more accurate predictions or classifications based on the context and patterns they observe.

One popular example of a sequence model is the Recurrent Neural Network (RNN). RNNs process input data sequentially while maintaining an internal memory that takes into account past inputs. This memory enables them to incorporate information from previous data points, making them particularly powerful in tasks like sentiment analysis, machine translation, and speech synthesis.

Another commonly used sequence model is the Transformer model. Transformers are mainly used in natural language processing tasks and have gained popularity due to their ability to handle long-range dependencies efficiently. They use an attention mechanism to focus on different parts of the input sequence, allowing them to capture relationships between words and characters effectively.

Overall, sequence models are vital in analyzing and understanding sequential data, enabling users like you to uncover valuable insights and make informed decisions in various fields. skills. Choose from a wide range of Sequence Models courses offered by top universities and industry leaders tailored to various skill levels.‎

When looking to enhance your workforce's skills in Sequence Models, it's crucial to select a course that aligns with their current abilities and learning objectives. Our Skills Dashboard is an invaluable tool for identifying skill gaps and choosing the most appropriate course for effective upskilling. For a comprehensive understanding of how our courses can benefit your employees, explore the enterprise solutions we offer. Discover more about our tailored programs at Coursera for Business here.‎

This FAQ content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

Other topics to explore

Arts and Humanities
338 courses
Business
1095 courses
Computer Science
668 courses
Data Science
425 courses
Information Technology
145 courses
Health
471 courses
Math and Logic
70 courses
Personal Development
137 courses
Physical Science and Engineering
413 courses
Social Sciences
401 courses
Language Learning
150 courses

Coursera Footer

Skills

  • Artificial Intelligence (AI)
  • Cybersecurity
  • Data Analytics
  • Digital Marketing
  • English Speaking
  • Generative AI (GenAI)
  • Microsoft Excel
  • Microsoft Power BI
  • Project Management
  • Python

Certificates & Programs

  • Google Cybersecurity Certificate
  • Google Data Analytics Certificate
  • Google IT Support Certificate
  • Google Project Management Certificate
  • Google UX Design Certificate
  • IBM Data Analyst Certificate
  • IBM Data Science Certificate
  • Machine Learning Certificate
  • Microsoft Power BI Data Analyst Certificate
  • UI / UX Design Certificate

Industries & Careers

  • Business
  • Computer Science
  • Data Science
  • Education & Teaching
  • Engineering
  • Finance
  • Healthcare
  • Human Resources (HR)
  • Information Technology (IT)
  • Marketing

Career Resources

  • Career Aptitude Test
  • Examples of Strengths and Weaknesses for Job Interviews
  • High-Income Skills to Learn
  • How Does Cryptocurrency Work?
  • How to Highlight Duplicates in Google Sheets
  • How to Learn Artificial Intelligence
  • Popular Cybersecurity Certifications
  • Preparing for the PMP Certification
  • Signs You Will Get the Job After an Interview
  • What Is Artificial Intelligence?

Coursera

  • About
  • What We Offer
  • Leadership
  • Careers
  • Catalog
  • Coursera Plus
  • Professional Certificates
  • MasterTrack® Certificates
  • Degrees
  • For Enterprise
  • For Government
  • For Campus
  • Become a Partner
  • Social Impact
  • Free Courses
  • Share your Coursera learning story

Community

  • Learners
  • Partners
  • Beta Testers
  • Blog
  • The Coursera Podcast
  • Tech Blog

More

  • Press
  • Investors
  • Terms
  • Privacy
  • Help
  • Accessibility
  • Contact
  • Articles
  • Directory
  • Affiliates
  • Modern Slavery Statement
  • Do Not Sell/Share
Learn Anywhere
Download on the App Store
Get it on Google Play
Logo of Certified B Corporation
© 2025 Coursera Inc. All rights reserved.
  • Coursera Facebook
  • Coursera Linkedin
  • Coursera Twitter
  • Coursera YouTube
  • Coursera Instagram
  • Coursera TikTok