Kurse in Künstlicher Intelligenz (KI) können Ihnen helfen, zentrale Konzepte wie maschinelles Lernen, neuronale Netze und einfache Modelle zur Vorhersage kennenzulernen. Sie können Fähigkeiten im Umgang mit Daten, Bewertungsmethoden und im Verständnis von KI-Verhalten aufbauen. Viele Kurse führen in Werkzeuge wie Python-Bibliotheken oder No-Code-Plattformen ein, mit denen Sie KI-Anwendungen ausprobieren können.

Kompetenzen, die Sie erwerben: Business Intelligence, Verantwortungsvolle KI, Risikominderung, Erstellung von Inhalten, Generative KI, Verarbeitung natürlicher Sprache
Anfänger · Kurs · 1–4 Wochen

DeepLearning.AI
Kompetenzen, die Sie erwerben: Künstliche Intelligenz, KI-Produktstrategie, Verantwortungsvolle KI, Datenverarbeitung, Künstliche neuronale Netze, Deep Learning, Strategisches Denken, Datenethik, Maschinelles Lernen
Anfänger · Kurs · 1–4 Wochen

Kompetenzen, die Sie erwerben: Innovation, Künstliche Intelligenz und Maschinelles Lernen (KI/ML), Generative KI, Kritisches Denken, Maschinelles Lernen
Anfänger · Kurs · 1–4 Wochen

Amazon Web Services
Kompetenzen, die Sie erwerben: Artificial Intelligence and Machine Learning (AI/ML), Generative AI, Deep Learning, Artificial Intelligence, Amazon Web Services, Applied Machine Learning, Machine Learning
Gemischt · Kurs · 1–4 Wochen

University of Pennsylvania
Kompetenzen, die Sie erwerben: Business Transformation, Daten-Governance, Verantwortungsvolle KI, Geschäftsstrategie, Persönlich identifizierbare Informationen, Aufdeckung von Betrug, Big Data, Analytics, Datensicherheit, Datenmanagement, AI-Personalisierung, Governance, Algorithmen für maschinelles Lernen, Generative KI, Maschinelles Lernen, Kreditrisiko, Datenethik, HR Technik, People Analytics, Personalwesen
Anfänger · Spezialisierung · 3–6 Monate

Kompetenzen, die Sie erwerben: Innovation, Künstliche Intelligenz und Maschinelles Lernen (KI/ML), Generative KI, Operative Effizienz, Kritisches Denken, Rahmen für die Bewertung der Sicherheit von Informationssystemen (ISSAF), Automatisierung von Geschäftsprozessen, Analyse, Datensicherheit, Produktivitätssoftware, Prompt-Muster, Schnelles Engineering
Anfänger · Spezialisierung · 1–3 Monate

Google Cloud
Kompetenzen, die Sie erwerben: Prompt Engineering, Generative AI Agents, Google Gemini, Responsible AI, Google Workspace, Generative AI, Google Cloud Platform, AI Product Strategy, Productivity Software, LLM Application, Business Leadership, Unstructured Data, Tool Calling, Data Ethics, Customer experience improvement, Artificial Intelligence, Data Governance, Organizational Strategy, Cloud Computing, Collaboration
Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

Microsoft
Kompetenzen, die Sie erwerben: Unsupervised Learning, Generative AI, Large Language Modeling, Data Management, Natural Language Processing, MLOps (Machine Learning Operations), Supervised Learning, Microsoft Azure, Deep Learning, Artificial Intelligence and Machine Learning (AI/ML), Infrastructure Architecture, LLM Application, Responsible AI, Generative AI Agents, Applied Machine Learning, Reinforcement Learning, Data Ethics, Prompt Engineering, Data Processing, Application Deployment
Mittel · Berufsbezogenes Zertifikat · 3–6 Monate

Mehrere Erzieher
Kompetenzen, die Sie erwerben: Künstliche Intelligenz, Verantwortungsvolle KI, Anomalie-Erkennung, Klassifizierungs- und Regressionsbaum (CART), Scikit Learn (Bibliothek für Maschinelles Lernen), Lernen mit Entscheidungsbäumen, Überwachtes Lernen, Künstliche Intelligenz und Maschinelles Lernen (KI/ML), Reinforcement Learning, Angewandtes maschinelles Lernen, Deep Learning, Datenethik, Prädiktive Modellierung, Feature Technik, Unüberwachtes Lernen, Random Forest Algorithmus, NumPy, Jupyter, Tensorflow, Maschinelles Lernen
Anfänger · Spezialisierung · 1–3 Monate

Kompetenzen, die Sie erwerben: Neue Produktentwicklung, Künstliche Intelligenz, KI-Produktstrategie, Verantwortungsvolle KI, Innovation, Produktentwicklung, Generative Modellarchitekturen, ChatGPT, Produkt-Roadmaps, Produktplanung, Produktstrategie, Schnelles Engineering, Produktmanagement, Kommerzialisierung, Produktlebenszyklus-Management, Prompt-Muster, Projektmanagende Life Cycle, Usability-Tests, Generative KI, OpenAI
Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

IBM
Kompetenzen, die Sie erwerben: Python-Programmierung, Computervision, Datenverarbeitung, PyTorch (Bibliothek für Maschinelles Lernen), Überwachtes Lernen, LLM-Bewerbung, Scikit Learn (Bibliothek für Maschinelles Lernen), PySpark, Deep Learning, Reinforcement Learning, Schnelles Engineering, Regressionsanalyse, Apache Spark, Unüberwachtes Lernen, Angewandtes maschinelles Lernen, Keras (Bibliothek für Neuronale Netze), Modellierung großer Sprachen, Jupyter, Generative KI, Maschinelles Lernen
Auf einen Abschluss hinarbeiten
Mittel · Berufsbezogenes Zertifikat · 3–6 Monate

Kompetenzen, die Sie erwerben: Python-Programmierung, LangChain, Verantwortungsvolle KI, Datenverarbeitung, LLM-Bewerbung, Computervision, Reaktionsfähiges Webdesign, ChatGPT, Daten importieren/exportieren, Technische Software, Schnelles Engineering, Workflow Management, Generative KI, Lebenszyklus der Softwareentwicklung, Modellierung großer Sprachen, Prompt-Muster, Restful API, Software-Architektur, IBM Cloud, Maschinelles Lernen
Auf einen Abschluss hinarbeiten
Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate
Künstliche Intelligenz (KI) bezeichnet die Simulation menschlicher Intelligenz in Maschinen, die so programmiert sind, dass sie wie Menschen denken und lernen. Diese Technologie ist von entscheidender Bedeutung, da sie das Potenzial hat, Branchen zu transformieren, die Produktivität zu steigern und Entscheidungsprozesse zu verbessern. KI-Systeme können große Datenmengen schnell analysieren, Muster erkennen und Vorhersagen treffen, was zu innovativen Lösungen in verschiedenen Bereichen wie Gesundheit, Finanzen und Bildung führen kann.
Auf dem Gebiet der Künstlichen Intelligenz gibt es eine Vielzahl von Beschäftigungsmöglichkeiten. Rollen wie KI-Ingenieur, Datenwissenschaftler, Ingenieur für Maschinelles Lernen und KI-Forscher sind sehr gefragt. Darüber hinaus gibt es zunehmend Positionen in den Bereichen KI-Ethik, Datenanalyse und KI-Projektmanagement, da Unternehmen KI zunehmend in ihre Abläufe integrieren. Diese Positionen erfordern oft eine Mischung aus technischen Fähigkeiten und Domänenwissen, wodurch sie für Personen mit unterschiedlichem Hintergrund zugänglich sind.
Um eine Karriere im Bereich der Künstlichen Intelligenz anzustreben, sollten Sie sich auf die Entwicklung einer soliden Grundlage in Programmiersprachen wie Python und R sowie auf das Verständnis von Algorithmen und Datenstrukturen konzentrieren. Kenntnisse in Maschinellem Lernen, Statistik und Datenanalyse sind ebenfalls unerlässlich. Vertrautheit mit KI-Frameworks und -Tools wie TensorFlow oder PyTorch kann Ihre Fähigkeiten verbessern. Darüber hinaus sind Soft skills wie Problemlösung, kritisches Denken und effektive Kommunikation in diesem Bereich wertvoll.
Es gibt zahlreiche Online-Kurse, die sich mit Künstlicher Intelligenz befassen. Einige bemerkenswerte Optionen sind die Spezialisierung Künstliche Intelligenz: ein Überblick und die Künstliche Intelligenz mit Python: Foundations to Projects Spezialisierung. Diese Kurse decken grundlegende Konzepte und praktische Anwendungen ab und eignen sich daher für Lernende auf verschiedenen Niveaus.
Ja, Sie können Künstliche Intelligenz auf Coursera auf zwei Arten kostenlos erlernen:
Wenn Sie weiterlernen, ein Zertifikat in Künstlicher Intelligenz erwerben oder den vollen Kurszugang nach der Vorschau oder Probezeit freischalten möchten, können Sie ein Upgrade durchführen oder finanzielle Unterstützung beantragen.
Um Künstliche Intelligenz effektiv zu erlernen, sollten Sie sich zunächst über Ihren aktuellen Kenntnisstand und Ihre Ziele klar werden. Beginnen Sie mit Einführungskursen, um Grundkenntnisse zu erwerben, und gehen Sie dann zu fortgeschritteneren Themen über. Führen Sie praktische Projekte durch, um das Gelernte anzuwenden, und schließen Sie sich Online-Communities oder Foren an, um sich mit anderen Lernenden auszutauschen. Konsequentes Üben und das Erforschen von realen Anwendungen wird Ihr Verständnis verstärken und Ihr Selbstvertrauen steigern.
Typische Themen, die in Kursen zur Künstlichen Intelligenz behandelt werden, sind Maschinelles Lernen, Verarbeitung natürlicher Sprache, Computer Vision und Robotik. In den Kursen werden häufig die ethischen Auswirkungen der KI, Datenverzerrungen und die Grenzen von Algorithmen untersucht. Darüber hinaus können sich die Lernenden mit spezifischen Anwendungen von KI in verschiedenen Branchen wie dem Finanzwesen, dem Gesundheitswesen und der wissenschaftlichen Forschung befassen, um ein umfassendes Verständnis des Bereichs zu erlangen.
Für das Training und die Weiterbildung von Mitarbeitern im Bereich der Künstlichen Intelligenz sind Kurse wie das CertNexus Certified Artificial Intelligence Practitioner Professional Zertifikat besonders vorteilhaft. Diese Programme sollen Fachleute mit den notwendigen Fähigkeiten ausstatten, um KI-Lösungen in ihren Unternehmen effektiv zu implementieren und eine Kultur der Innovation und Anpassungsfähigkeit in der Belegschaft zu fördern.