IBM

IBM Data Science Professional Certificate

IBM

IBM Data Science Professional Certificate

Prepare for a career as a data scientist. Develop in-demand skills and hands-on experience to get job-ready in as little as 5 months. No prior experience required.

Dr. Pooja
Romeo Kienzler
Joseph Santarcangelo

Instructors: Dr. Pooja

Access provided by Assam down town University

833,251 already enrolled

Earn a career credential that demonstrates your expertise

from 149,562 reviews of courses in this program

Beginner level
No prior experience required
5 months to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Earn a career credential that demonstrates your expertise

from 149,562 reviews of courses in this program

Beginner level
No prior experience required
5 months to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Master the most up-to-date practical skills and knowledge that data scientists use in their daily roles

  • Learn the tools, languages, and libraries used by professional data scientists, including Python and SQL

  • Import and clean data sets, analyze and visualize data, and build machine learning models and pipelines

  • Apply your new skills to real-world projects and build a portfolio of data projects that showcase your proficiency to employers

Details to know

Shareable certificate

Add to your LinkedIn profile

Taught in English

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

Prepare for a career in Data Science

  • Receive professional-level training from IBM
  • Demonstrate your proficiency in portfolio-ready projects
  • Earn an employer-recognized certificate from IBM
  • Qualify for in-demand job titles: Data Scientist, Junior Data Scientist, Data Architect
$138,000+
median U.S. salary for Data Science
¹
69,000+
U.S. job openings in Data Science
¹

Professional Certificate - 10 course series

What is Data Science?

What is Data Science?

Course 1 11 hours

What you'll learn

  • Define data science and its importance in today’s data-driven world.

  • Describe the various paths that can lead to a career in data science.

  • Summarize  advice given by seasoned data science professionals to data scientists who are just starting out.

  • Explain why data science is considered the most in-demand job in the 21st century.

Skills you'll gain

Category: Data Science
Category: Big Data
Category: Cloud Computing
Category: Machine Learning
Category: Deep Learning
Category: Digital Transformation
Category: Data Analysis
Category: Data Literacy
Category: Data Mining
Category: Data-Driven Decision-Making
Category: Artificial Intelligence
Tools for Data Science

Tools for Data Science

Course 2 17 hours

What you'll learn

  • Describe the Data Scientist’s tool kit which includes: Libraries & Packages, Data sets, Machine learning models, and Big Data tools 

  • Utilize languages commonly used by data scientists like Python, R, and SQL 

  • Demonstrate working knowledge of tools such as Jupyter notebooks and RStudio and utilize their various features  

  • Create and manage source code for data science using Git repositories and GitHub. 

Skills you'll gain

Category: Jupyter
Category: R Programming
Category: GitHub
Category: Development Environment
Category: Machine Learning
Category: Data Visualization Software
Category: Data Science
Category: Open Source Technology
Category: Data Management
Category: Git (Version Control System)
Category: Python Programming
Category: R (Software)
Category: Cloud Computing
Category: Statistical Programming
Category: Cloud Services
Category: Other Programming Languages
Data Science Methodology

Data Science Methodology

Course 3 8 hours

What you'll learn

  • Describe what a data science methodology is and why data scientists need a methodology.

  • Apply the six stages in the Cross-Industry Process for Data Mining (CRISP-DM) methodology to analyze a case study.

  • Evaluate which analytic model is appropriate among predictive, descriptive, and classification models used to analyze a case study.

  • Determine appropriate data sources for your data science analysis methodology.

Skills you'll gain

Category: Model Evaluation
Category: Business Analysis
Category: Data Storytelling
Category: Data Science
Category: Data Cleansing
Category: Model Deployment
Category: Jupyter
Category: Business Requirements
Category: Data Mining
Category: Data Preprocessing
Category: Decision Tree Learning
Category: Data Modeling
Category: Data Analysis

What you'll learn

  • Develop a foundational understanding of Python programming by learning basic syntax, data types, expressions, variables, and string operations.

  • Apply Python programming logic using data structures, conditions and branching, loops, functions, exception handling, objects, and classes.

  • Demonstrate proficiency in using Python libraries such as Pandas and Numpy and developing code using Jupyter Notebooks.

  • Access and extract web-based data by working with REST APIs using requests and performing web scraping with BeautifulSoup.

Skills you'll gain

Category: Python Programming
Category: Pandas (Python Package)
Category: Web Scraping
Category: NumPy
Category: Data Structures
Category: File I/O
Category: Application Programming Interface (API)
Category: Jupyter
Category: Object Oriented Programming (OOP)
Category: JSON
Category: Data Import/Export
Category: Restful API
Category: Automation
Category: Data Analysis
Category: Computer Programming
Category: Programming Principles
Category: Data Manipulation

What you'll learn

  • Play the role of a Data Scientist / Data Analyst working on a real project.

  • Demonstrate your Skills in Python - the language of choice for Data Science and Data Analysis.

  • Apply Python fundamentals, Python data structures, and working with data in Python.

  • Build a dashboard using Python and libraries like Pandas, Beautiful Soup and Plotly using Jupyter notebook.

Skills you'll gain

Category: Web Scraping
Category: Data Collection
Category: Python Programming
Category: Data Visualization Software
Category: Data Analysis
Category: Graphing
Category: Real Time Data
Category: Dashboard
Category: Data Presentation
Category: Pandas (Python Package)
Category: Jupyter
Category: Data Science
Category: Data Wrangling

What you'll learn

  • Analyze data within a database using SQL and Python.

  • Create a relational database and work with multiple tables using DDL commands.

  • Construct basic to intermediate level SQL queries using DML commands.

  • Compose more powerful queries with advanced SQL techniques like views, transactions, stored procedures, and joins.

Skills you'll gain

Category: SQL
Category: Pandas (Python Package)
Category: Data Manipulation
Category: Relational Databases
Category: Jupyter
Category: Databases
Category: Data Analysis
Category: Python Programming
Category: Query Languages
Category: Stored Procedure
Category: Transaction Processing
Data Analysis with Python

Data Analysis with Python

Course 7 17 hours

What you'll learn

  • Construct Python programs to clean and prepare data for analysis by addressing missing values, formatting inconsistencies, normalization, and binning

  • Analyze real-world datasets through exploratory data analysis (EDA) using libraries such as Pandas, NumPy, and SciPy to uncover patterns and insights

  • Apply data operation techniques using dataframes to organize, summarize, and interpret data distributions, correlation analysis, and data pipelines

  • Develop and evaluate regression models using Scikit-learn, and use these models to generate predictions and support data-driven decision-making

Skills you'll gain

Category: Pandas (Python Package)
Category: Regression Analysis
Category: Model Evaluation
Category: NumPy
Category: Data Manipulation
Category: Scikit Learn (Machine Learning Library)
Category: Data Preprocessing
Category: Data Analysis
Category: Exploratory Data Analysis
Category: Predictive Modeling
Category: Data Cleansing
Category: Data Import/Export
Category: Matplotlib
Category: Data Visualization
Category: Data Transformation
Category: Predictive Analytics
Category: Python Programming
Category: Statistical Analysis
Category: Feature Engineering
Data Visualization with Python

Data Visualization with Python

Course 8 20 hours

What you'll learn

  • Implement data visualization techniques and plots using Python libraries, such as Matplotlib, Seaborn, and Folium to tell a stimulating story

  • Create different types of charts and plots such as line, area, histograms, bar, pie, box, scatter, and bubble

  • Create advanced visualizations such as waffle charts, word clouds, regression plots, maps with markers, & choropleth maps

  • Generate interactive dashboards containing scatter, line, bar, bubble, pie, and sunburst charts using the Dash framework and Plotly library

Skills you'll gain

Category: Matplotlib
Category: Interactive Data Visualization
Category: Seaborn
Category: Dashboard
Category: Plotly
Category: Jupyter
Category: Histogram
Category: Geospatial Mapping
Category: Scatter Plots
Category: Data Visualization Software
Category: Python Programming
Category: Data Presentation
Category: Data Analysis
Category: Data Storytelling
Category: Geospatial Information and Technology
Category: Data Visualization
Machine Learning with Python

Machine Learning with Python

Course 9 20 hours

What you'll learn

  • Explain key concepts, tools, and roles involved in machine learning, including supervised and unsupervised learning techniques.

  • Apply core machine learning algorithms such as regression, classification, clustering, and dimensionality reduction using Python and scikit-learn.

  • Evaluate model performance using appropriate metrics, validation strategies, and optimization techniques.

  • Build and assess end-to-end machine learning solutions on real-world datasets through hands-on labs, projects, and practical evaluations.

Skills you'll gain

Category: Regression Analysis
Category: Classification Algorithms
Category: Model Evaluation
Category: Supervised Learning
Category: Unsupervised Learning
Category: Machine Learning
Category: Scikit Learn (Machine Learning Library)
Category: Dimensionality Reduction
Category: Decision Tree Learning
Category: Logistic Regression
Category: Feature Engineering
Category: Python Programming
Category: Applied Machine Learning
Category: Predictive Modeling
Applied Data Science Capstone

Applied Data Science Capstone

Course 10 14 hours

What you'll learn

  • Demonstrate proficiency in data science and machine learning techniques using a real-world data set and prepare a report for stakeholders 

  • Apply your skills to perform data collection, data wrangling, exploratory data analysis, data visualization model development, and model evaluation

  • Write Python code to create machine learning models including support vector machines, decision tree classifiers, and k-nearest neighbors

  • Evaluate the results of machine learning models for predictive analysis, compare their strengths and weaknesses and identify the optimal model 

Skills you'll gain

Category: Exploratory Data Analysis
Category: SQL
Category: Predictive Modeling
Category: Plotly
Category: Data Wrangling
Category: Data Analysis
Category: Web Scraping
Category: Data-Driven Decision-Making
Category: Statistical Machine Learning
Category: Model Evaluation
Category: Business Analytics
Category: Python Programming
Category: Pandas (Python Package)
Category: GitHub
Category: Data Science
Category: Data Storytelling

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Build toward a degree

When you complete this Professional Certificate, you may be able to have your learning recognized for credit if you are admitted and enroll in one of the following online degree programs.¹

 
ACE Logo

This Professional Certificate has ACE® recommendation. It is eligible for college credit at participating U.S. colleges and universities. Note: The decision to accept specific credit recommendations is up to each institution. 

Instructors

Dr. Pooja
IBM
4 Courses 382,459 learners
Romeo Kienzler
IBM
10 Courses 816,421 learners
Joseph Santarcangelo
IBM
37 Courses 2,346,572 learners

Offered by

IBM

Why people choose Coursera for their career

¹Lightcast™ Job Postings Report, United States, 7/1/22-6/30/23. ²Based on program graduate survey responses, United States 2021.