About this Specialization
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Beginner Level

Beginner Level

Hours to complete

Approx. 9 months to complete

Suggested 6 hours/week
Available languages

English

Subtitles: English, Chinese (Simplified), Arabic...

Skills you will gain

StatisticsStatistical InferenceR ProgrammingQualitative Research
100% online courses

100% online courses

Start instantly and learn at your own schedule.
Flexible Schedule

Flexible Schedule

Set and maintain flexible deadlines.
Beginner Level

Beginner Level

Hours to complete

Approx. 9 months to complete

Suggested 6 hours/week
Available languages

English

Subtitles: English, Chinese (Simplified), Arabic...

How the Specialization Works

Take Courses

A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.

Hands-on Project

Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.

Earn a Certificate

When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

how it works

There are 5 Courses in this Specialization

Course1

Quantitative Methods

4.7
944 ratings
312 reviews
Discover the principles of solid scientific methods in the behavioral and social sciences. Join us and learn to separate sloppy science from solid research! This course will cover the fundamental principles of science, some history and philosophy of science, research designs, measurement, sampling and ethics. The course is comparable to a university level introductory course on quantitative research methods in the social sciences, but has a strong focus on research integrity. We will use examples from sociology, political sciences, educational sciences, communication sciences and psychology....
Course2

Qualitative Research Methods

4.5
507 ratings
165 reviews
In this course you will be introduced to the basic ideas behind the qualitative research in social science. You will learn about data collection, description, analysis and interpretation in qualitative research. Qualitative research often involves an iterative process. We will focus on the ingredients required for this process: data collection and analysis. You won't learn how to use qualitative methods by just watching video's, so we put much stress on collecting data through observation and interviewing and on analysing and interpreting the collected data in other assignments. Obviously, the most important concepts in qualitative research will be discussed, just as we will discuss quality criteria, good practices, ethics, writing some methods of analysis, and mixing methods. We hope to take away some prejudice, and enthuse many students for qualitative research....
Course3

Basic Statistics

4.7
1,862 ratings
501 reviews
Understanding statistics is essential to understand research in the social and behavioral sciences. In this course you will learn the basics of statistics; not just how to calculate them, but also how to evaluate them. This course will also prepare you for the next course in the specialization - the course Inferential Statistics. In the first part of the course we will discuss methods of descriptive statistics. You will learn what cases and variables are and how you can compute measures of central tendency (mean, median and mode) and dispersion (standard deviation and variance). Next, we discuss how to assess relationships between variables, and we introduce the concepts correlation and regression. The second part of the course is concerned with the basics of probability: calculating probabilities, probability distributions and sampling distributions. You need to know about these things in order to understand how inferential statistics work. The third part of the course consists of an introduction to methods of inferential statistics - methods that help us decide whether the patterns we see in our data are strong enough to draw conclusions about the underlying population we are interested in. We will discuss confidence intervals and significance tests. You will not only learn about all these statistical concepts, you will also be trained to calculate and generate these statistics yourself using freely available statistical software....
Course4

Inferential Statistics

4.4
269 ratings
75 reviews
Inferential statistics are concerned with making inferences based on relations found in the sample, to relations in the population. Inferential statistics help us decide, for example, whether the differences between groups that we see in our data are strong enough to provide support for our hypothesis that group differences exist in general, in the entire population. We will start by considering the basic principles of significance testing: the sampling and test statistic distribution, p-value, significance level, power and type I and type II errors. Then we will consider a large number of statistical tests and techniques that help us make inferences for different types of data and different types of research designs. For each individual statistical test we will consider how it works, for what data and design it is appropriate and how results should be interpreted. You will also learn how to perform these tests using freely available software. For those who are already familiar with statistical testing: We will look at z-tests for 1 and 2 proportions, McNemar's test for dependent proportions, t-tests for 1 mean (paired differences) and 2 means, the Chi-square test for independence, Fisher’s exact test, simple regression (linear and exponential) and multiple regression (linear and logistic), one way and factorial analysis of variance, and non-parametric tests (Wilcoxon, Kruskal-Wallis, sign test, signed-rank test, runs test)....

Instructors

Avatar

Annemarie Zand Scholten

Assistant Professor
Economics and Business
Avatar

Gerben Moerman

Dr.
Faculty of Social and Behavioural Sciences
Avatar

Matthijs Rooduijn

Dr.
Department of Political Science
Avatar

Emiel van Loon

Assistant Professor
Institute for Biodiversity and Ecosystem Dynamics

About University of Amsterdam

A modern university with a rich history, the University of Amsterdam (UvA) traces its roots back to 1632, when the Golden Age school Athenaeum Illustre was established to train students in trade and philosophy. Today, with more than 30,000 students, 5,000 staff and 285 study programmes (Bachelor's and Master's), many of which are taught in English, and a budget of more than 600 million euros, it is one of the largest comprehensive universities in Europe. It is a member of the League of European Research Universities and also maintains intensive contact with other leading research universities around the world....

Frequently Asked Questions

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 10 months.

  • Each course in the Specialization is offered on demand, and may be taken at any time.

  • A basic understanding of scientific principles and research methods may be helpful, but is not required. Only very basic math skills are required, you should be able to perform: addition, subtraction, multiplication, calculation of square, square root, exponents and logarithms.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • At the end of this Specialization, you will be performing your own statistical analyses using the programming language R, with no prior knowledge of programming. Learners who complete the Research Methods and Statistics for Social Science Specialization will learn more about scientific rigor and integrity. You’ll have the methods, statistics and research skills required to complete a typical Masters program in the Social Sciences or the Johns Hopkins Data Science Specialization, and also be ready for more advanced courses on big data or multivariate statistics.

More questions? Visit the Learner Help Center.