This Statistics for Data Science course is designed to introduce you to the basic principles of statistical methods and procedures used for data analysis. After completing this course you will have practical knowledge of crucial topics in statistics including - data gathering, summarizing data using descriptive statistics, displaying and visualizing data, examining relationships between variables, probability distributions, expected values, hypothesis testing, introduction to ANOVA (analysis of variance), regression and correlation analysis. You will take a hands-on approach to statistical analysis using Python and Jupyter Notebooks – the tools of choice for Data Scientists and Data Analysts.
Offered By

About this Course
Skills you will gain
Offered by

IBM
IBM is the global leader in business transformation through an open hybrid cloud platform and AI, serving clients in more than 170 countries around the world. Today 47 of the Fortune 50 Companies rely on the IBM Cloud to run their business, and IBM Watson enterprise AI is hard at work in more than 30,000 engagements. IBM is also one of the world’s most vital corporate research organizations, with 28 consecutive years of patent leadership. Above all, guided by principles for trust and transparency and support for a more inclusive society, IBM is committed to being a responsible technology innovator and a force for good in the world.
Syllabus - What you will learn from this course
Course Introduction and Python Basics
Welcome!
Introduction & Descriptive Statistics
This module will focus on introducing the basics of descriptive statistics - mean, median, mode, variance, and standard deviation. It will explain the usefulness of the measures of central tendency and dispersion for different levels of measurement.
Data Visualization
This module will focus on different types of visualization depending on the type of data and information we are trying to communicate. You will learn to calculate and interpret these measures and graphs.
Introduction to Probability Distributions
This module will introduce the basic concepts and application of probability and probability distributions.
Hypothesis testing
This module will focus on teaching the appropriate test to use when dealing with data and relationships between them. It will explain the assumptions of each test and the appropriate language when interpreting the results of a hypothesis test.
Reviews
TOP REVIEWS FROM STATISTICS FOR DATA SCIENCE WITH PYTHON
The final assignment is very well designed, I was able to review the entire course material and consolidate the learning. I have now a good understanding of hypothesis testing.
A well structured course, simple and direct to the point, with a little of exercising you'll come out with a huge understanding of the statistical concepts.
Excellent course to help clear doubts for the level of statistics needed for data science. It a great experience. well done IBM!
Amazing course . Very easy to follow . Definitely improved on my python skills . Would 100% recommend .
About the Data Science Fundamentals with Python and SQL Specialization
Data science is one of the hottest professions of the decade, and the demand for data scientists who can analyze data and communicate results to inform data driven decisions has never been greater. This Specialization from IBM will help anyone interested in pursuing a career in data science by teaching them fundamental skills to get started in this in-demand field.

Frequently Asked Questions
When will I have access to the lectures and assignments?
What will I get if I subscribe to this Specialization?
Is financial aid available?
Will I earn university credit for completing the Course?
More questions? Visit the Learner Help Center.