Back to Regression Models

stars

3,254 ratings

•

558 reviews

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....

KA

Dec 16, 2017

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.

BA

Jan 31, 2017

It really helped me to have a better understanding of these Regression Models. However, I've noticed that there is a video recording repeated: Week 3, Model Selection. Part 3 is included in Part 2.

Filter by:

By ANDREW L

•Jan 27, 2016

Better than Stat Inference, and gave some reasonable intuition, but could be improved I think by focussing on more understanding and less maths and formulas. Some of it did seem to be - here' s a formula, plug the numbers in to get the quiz question right, whereas in reality (in the world of work) that question is completely unrealistic - you have raw data and you need to do the regression and understand what it means.

By Feng H

•May 16, 2017

Not impressed. Dr. Caffo tried to use non-calculus, non-linear-algrebra ways to explain complex concepts and derivations. IMO, he should not have done that. It only made things more confusing. Also the final project is so unsatisfactory in that we were to analyze the data with 32 obs but 11 variables! How robust could it be? Was expecting something much more challenging than that.

By Satish V

•Apr 8, 2019

The instructor's delivery and content, although very professorial was very dry. For students who don't have that much of a background in regression and statistical inference, I think it would be good to get to the gist/summary - i.e the what (what kind of problem we are trying to solve) and the how (how to do it in R and more importantly how to interpret the results).

By Deepanshu R

•Jun 23, 2020

Some of the course lectures introduced a lot of new terms hampering the actual topic being discussed. I know we are expected to do a lot of self-learning. But, I found some random youtube videos more explanatory than some of the lectures here. I could understand the concepts better through those youtube videos because they were more easy-flowing and less cluttered.

By Mark B

•Mar 30, 2021

The material was relevant, but the project related to material that was not covered in the course. As a result, there was clearly rampant cheating on the project. The first two that I reviewed were word for word exactly the same. Others appeared to be very similar. I do not know why projects are not run through screening software when submitted.

By Asif M A

•Oct 23, 2016

I enjoyed the earlier courses more. I did not like the way the materials were provided. There were a lot of very complex ideas were presented, in a very concise and brief manner. Also, there should be more exercises to practice. May be its me, but, I guess, I might need more time to fully comprehend the materials.

By Boban D

•May 7, 2018

Much better than the inference course given by Mr. Caffo. This time at last I could follow the materials being covered. He is plotitng more often and scribbling on the slides which helps understanding the materials being covered by establishing a connection between the isolated issues in regression analysis.

By Codrin K

•Mar 28, 2018

To me, the approach was too much from the theory of statistics and its mathematical foundations; I would have appreciated a more applied approach for this course in the specialization. So starting from examples, questions anout data and then working towards theory instead of the other way around.

By VenusW

•Jan 9, 2017

This course is great, instructor is good, however, the material of this course is not well organized, even the swirl practice is not put in the correct week, not in the same pace as the lectures. The quiz and project are far much easier than lecture content.

By Brandon K

•Mar 30, 2016

I found the videos tough to watch. I was hoping for something that would be more practical for non-statisticians, but the lectures mainly devolved into mathematical proofs. That said, I did learn some from this class. Just not as much as I'd hoped.

By Zach

•Feb 4, 2016

There's just something about the course content that is difficult to attain. It's presented at way too high of a level without enough tangible examples of getting down into the weeds of how to actually perform and interpret the models and functions.

By 장진욱

•Feb 14, 2016

The flows of courses instructed by Caffo(Statistical Inference and Regression Models) are too long to concentrate it and the quiz is not quite related in lecture.

However, Contents of the book is really good, as well as homework in the book.

By Sarah R

•Mar 20, 2016

The instructor is at time incomprehensible. It would be helpful to speak more slowly and pause more often. Otherwise he sounds like repeating something that he's so well memorized after many years of teaching.

By Ramesh G

•Jun 4, 2020

Good introduction to linear regression models but fell awfully short on diving a little deep into GLMs and going through use cases to convey how models are built, evaluated and updated in a systemic manner.

By Fulvio B

•Apr 27, 2020

The course is interesting but probably overambitious. I think that if you do not have previous experience, with the material provided, it would be hard to have a real understanding of the topics covered.

By Pepijn d G

•May 23, 2016

The course is good. Unlike the previous courses I took in this track, there was almost no interaction in the forums and also no-one to give feedback. I wonder if there were any TA's present in this run.

By Raul M

•Jan 16, 2019

This course should be targeted for Data Scientists, in my opinion it is more for statisticians.

Too much about the insight of statistics and some but not enough about how to use the statistic tools.

By benjamin s

•Jun 20, 2018

A good (although slightly frustrating) course, attempted once but had to come back after studying the material in class, quite a heavy course if you've not been taught regression before

By Guilherme B D J

•Aug 21, 2016

Given the importance of this subject, this course should have been split in two or more or have a longer duration to properly address subjects as GLM or model selection techniques.

By Marco A M A

•May 9, 2016

This course is better than Statistical Inference, and I think it is as useful. Non credit excersise are still very good at helping with understanding in practice what is going on.

By Rok B

•Jun 28, 2019

Useful class, but the content often simple in nature was explained in a confusing/complicated way. But the material is important and there is purchase for taking the class

By Daniela R L

•Apr 19, 2021

These videos are better than the previous ones in this specialization but it gets too repetitive and long and boring. The swirl activities are the way to go!

By Jesse K

•Nov 2, 2018

The material was a little disjointed and not always explained with examples. Passing this course required a significant amount of outside study and research.

By Jason M C

•Mar 29, 2016

This is a decent class, covering linear regression and a few of its variants in good detail. It's a challenging subject, but presented acceptably here.

By Anamaria A

•Mar 12, 2017

Lots of material needs additional study (from different sources) as it's only summarily explained. Much math without the link to the praxis :-(

- Google Data Analyst
- Google Project Management
- Google UX Design
- Google IT Support
- IBM Data Science
- IBM Data Analyst
- IBM Data Analytics with Excel and R
- IBM Cybersecurity Analyst
- Facebook Social Media Marketing
- IBM Full Stack Cloud Developer
- Salesforce Sales Development Representative
- Salesforce Sales Operations
- Soporte de Tecnologías de la Información de Google
- Certificado profesional de Suporte em TI do Google
- Google IT Automation with Python
- DeepLearning.AI Tensorflow
- Popular Cybersecurity Certifications
- Popular SQL Certifications
- Popular IT Certifications
- See all certificates

- Skills for Data Science Teams
- Data Driven Decision Making
- Software Engineering Skills
- Soft Skills for Engineering Teams
- Management Skills
- Marketing Skills
- Skills for Sales Teams
- Product Manager Skills
- Skills for Finance
- Android Development Projects
- TensorFlow and Keras Projects
- Python for Everybody
- Deep Learning
- Excel Skills for Business
- Business Foundations
- Machine Learning
- AWS Fundamentals
- Data Engineering Foundations
- Data Analyst Skills
- Skills for UX Designers

- MasterTrack® Certificates
- Professional Certificates
- University Certificates
- MBA & Business Degrees
- Data Science Degrees
- Computer Science Degrees
- Data Analytics Degrees
- Public Health Degrees
- Social Sciences Degrees
- Management Degrees
- Degrees from Top European Universities
- Master's Degrees
- Bachelor's Degrees
- Degrees with a Performance Pathway
- Bsc Courses
- What is a Bachelor's Degree?
- How Long Does a Master's Degree Take?
- Is an Online MBA Worth It?
- 7 Ways to Pay for Graduate School
- See all degrees