Chevron Left
Back to Understanding and Visualizing Data with Python

Learner Reviews & Feedback for Understanding and Visualizing Data with Python by University of Michigan

1,928 ratings
392 reviews

About the Course

In this course, learners will be introduced to the field of statistics, including where data come from, study design, data management, and exploring and visualizing data. Learners will identify different types of data, and learn how to visualize, analyze, and interpret summaries for both univariate and multivariate data. Learners will also be introduced to the differences between probability and non-probability sampling from larger populations, the idea of how sample estimates vary, and how inferences can be made about larger populations based on probability sampling. At the end of each week, learners will apply the statistical concepts they’ve learned using Python within the course environment. During these lab-based sessions, learners will discover the different uses of Python as a tool, including the Numpy, Pandas, Statsmodels, Matplotlib, and Seaborn libraries. Tutorial videos are provided to walk learners through the creation of visualizations and data management, all within Python. This course utilizes the Jupyter Notebook environment within Coursera....

Top reviews

May 21, 2020

Excellent course materials, especially the videos, with content that is thoughtfully composed and carefully edited. Very good python training, great instructors, and overall great learning experience.

Aug 2, 2020

Great course to learn the basics! The supplementary material in Jupyter notebooks is extremely valuable. Really appreciate the PhD students who took the time to explain even the simplest of codes :)

Filter by:

276 - 300 of 390 Reviews for Understanding and Visualizing Data with Python

By Nedal

May 25, 2020









By Gabriel A A C

Feb 5, 2020


By Israel F

Jun 25, 2020


By 周晓

Apr 7, 2020



Jun 30, 2020


By Frank S Y R

Jan 17, 2019


By Durga S

Apr 16, 2021


By chang l

Aug 31, 2020



Mar 4, 2020



Feb 25, 2020



Feb 23, 2020



Feb 21, 2020



Feb 24, 2020


By Debasis D

May 12, 2021


By Jerrold

Oct 7, 2020

There are two main fields of study in this course which forms the foundation for the specialization: statistical theory, and programming with python data analysis packages. I learned so much about statistics and visualization that would have taken months to learn in university, I gained a lot of experience and knowledge from this course. I have a decent background in Jupyter notebook from university yet I still learned many new things and got an excellent chance to practice programming in the python packages. The course offered excellent optional practices and gave us several extremely insightful and educational analysis reports done in JN that were related to the module of the week for us to download.

I recommend you have a datacamp subscription to have access to some extra notes regarding programming in the packages particularly Pandas to get the most out of this course by attempting all the optional programming practices.

By Luis D R T

Oct 26, 2019

I loved several things, first that gives you an overview, useful, clear and fun of several basic statistical concepts such as measures of central tendency, different forms of graphic representation, and one of the most important at least for me (already that neither in school nor I would have ever thought about) the types of sampling that exist, because in school there is usually something called simple random sampling and we develop statistical techniques for it, almost completely ignoring the other types of sampling that are really common in real life and that when we face them we don't panic, I know that this is an easy level and I appreciate that in some way, but I would have expected a more difficult course that would have made the concepts really stay in me because I would be thinking about them continuously and how to apply them to the tasks that are presented week by week

By Matteo L

Apr 4, 2020

I think the content here is great and gives you a good overview for understanding and visualizing data without getting into the mathematics. Week 4 is absolutely great in terms of how the information is conveyed by Mr. West who is an excellent teacher in my opinion. I do think, however, that the quizzes and notebook assignments could be a little bit more challenging and I would have loved to have answers to the "more practice" notebooks. I think it would have been great for those notebooks to have been part of the assignments, adding to the difficulty of the course.

By Iver B

Jan 13, 2019

Good introduction to basic statistical methods with an emphasis on working with surveys, and a good introduction to basic statistical techniques with core Python, numpy, matplotlib, seaborn and statsmodels. Instructors and presentations are excellent, very clear. I would give it five stars if it were more interactive, i.e. with more in-video quizzes, and practice quizzes between videos. Also, I wish I had take this course before I did the Applied Data Science with Python specialization, also on Coursera, but, alas, it wasn't available then.

By Eric W

Feb 27, 2021

The course in general is great for overview of basic statistics and how to display the descriptive part using charts in Python. The latter part is something new I learnt from this course. However, I rated four because there are still rooms for improvement. First, week-3 course (probability vs non-probability sampling etc.) is a bit too long and repetitive. Second, while the peer-graded assessment is interesting, I don't like to wait for my work to be reviewed, hence delaying the overall completion of my participation.

By steven h

Apr 28, 2020

The course could be improved with more quizzes to apply what lectures cover. A lot of useful information is presented, but there was not enough opportunity for us to apply it. Also, the course should present more examples of statistical concepts. At times, it felt as if I was just listening to an audiobook. Statistics can be better understood by applying concepts and visualizing. Week 4, in particular, felt very rushed. There was a lot of "this will be addressed later", which diminished the relevance.

By Kuan-Chih W

Jun 28, 2020

It is a fairly good course for statistics introduction. However, the explanation on how to apply with python libraries is not well-organized. Learners must have a well understanding of numpy, pandas, Matplotlib and Seaborn on their own in advance, because the TAs just read through the code without explaining why in details.

The statistics concepts lecturer is very good, but the TA didn't describe python libraries or modules selection and application concept.

By Rahul P

Aug 9, 2020

Best course for Statistic to understand from Datascience POV. If you're a software developer or from computer science, then this course is good to go into to understand the statistics for DataScience.

Deducting one start for :- 1. Week 4 was too much lectures and less assignment. Felt rushed.

2. The pythonic technical tutorial was not explained much technically and hence i had to spent a lot of time on different course to learn them.

By Arfaa S

Sep 28, 2020

I am so happy to learn about data visualization through python. This course gives you a good amount of insight on how to visualize data through python and helps you understand the graphs and statistics behind it. I am very thankful to the team who have made up this course as it has been very helpful to me and other students like me to be much more confident with our knowledge in Python and Statistics.

By Teodoro N I D

Dec 6, 2020

The course is pretty technical and there are some gaps in the information that is presented (that will probably be addressed in later courses in the specialization), but it certainly whets one's appetite to learn more about statistics. I also appreciated the opportunities provided to apply the code that was learned and to see some of the theories in action. A worthwhile take overall.

By Divya R

May 23, 2020

This is a tactfully curated course for getting your legs wet in statistics with python, I personally was not completely comfortable with the statistical explanation and had to refer to multiple sources but hey a splendid job in other crucial things such as working around a code!! 10/10 recommend!! I wish to connect with the tutors via Linkedin