In this course, you will go in-depth to discover how Machine Learning is used to handle and interpret Big Data. You will get a detailed look at the various ways and methods to create algorithms to incorporate into your business with such tools as Teachable Machine and TensorFlow. You will also learn different ML methods, Deep Learning, as well as the limitations but also how to drive accuracy and use the best training data for your algorithms. You will then explore GANs and VAEs, using your newfound knowledge to engage with AutoML to help you start building algorithms that work to suit your needs. You will also see exclusive interviews with industry leaders, who manage Big Data for companies such as McDonald's and Visa. By the end of this course, you will have learned different ways to code, including how to use no-code tools, understand Deep Learning, how to measure and review errors in your algorithms, and how to use Big Data to not only maintain customer privacy but also how to use this data to develop different strategies that will drive your business.
This course is part of the AI For Business Specialization
Offered By
About this Course
Offered by

University of Pennsylvania
The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies.
Syllabus - What you will learn from this course
Module 1 – Big Data and Artificial Intelligence
In this module, you will be introduced to Big Data and examine how machine learning is used throughout various business segments. You will also learn how data is analyzed and extracted, and how digital technologies have been used to expand and transform businesses. You will also get a detailed look at data management tools and how they are best implemented and the value of data warehouses. By the end of this module, you will have gained insight into how machine learning can be used as a general-purpose technology, and some best techniques and practices for data mining.
Module 2 – Training and Evaluating Machine Learning Algorithms
In this module, you will get an in-depth look at contrasting Machine Learning methods, including logistic regression and neural nets. You will also learn about Deep Learning and its relationship to neural networks and how to best optimize Machine Learning algorithms. Lastly, you will be introduced to loss functions and how to best measure and review errors to maintain the integrity of your algorithms. By the end of this module, you will have learned about Machine Learning methods, the limitations and value of Deep Learning, how best to drive precision and accuracy in algorithms, and how to get the best training data for those algorithms.
Module 3 – ML Application and Emerging Methods
In this module, you will take a look at Machine Learning within natural language processing and using generative modeling to create new data. You will also focus on AutoML and how to best utilize automated processes to make your algorithms more efficient. You will also review the no-code Machine Learning tool Teachable Machine, which serves to make Deep and Machine Learning more accessible. By the end of this module, you will be able to use AutoML in your algorithms and be able to navigate and use Teachable Machine in practice for no-code solutions to building an algorithm.
Module 4 - Industry Interview
In this module, you will hear from an industry leader and gain valuable insight into data sampling and building realistic usable models. Ed Lee, VP of Global Menu Strategy & Global Marketing at McDonald's, will allow you to review real-world solutions and how they handle data issues as one of the most successful global brands. By the end of this module, you will have heard from a top industry expert in their field and gained firsthand knowledge and understanding of how Big Data plays into maintaining privacy in data and also utilizing that data to enhance your marketing, content, and refine your algorithms.
Reviews
- 5 stars82.22%
- 4 stars13.33%
- 1 star4.44%
TOP REVIEWS FROM AI FUNDAMENTALS FOR NON-DATA SCIENTISTS
Excellent information and presentation. The only drawback in being so thought provoking, the format does not allow for active convesations in expanding understanding or ideas.
Excellent introduction to the basic concepts of using AI and Machine Learning in a business context.
Helping me to clear doubts and i feel like getting required information. Thank you Coursera and Professinal Team.
About the AI For Business Specialization
This specialization will provide learners with the fundamentals of using Big Data, Artificial Intelligence, and Machine Learning and the various areas in which you can deploy them to support your business. You'll cover ethics and risks of AI, designing governance frameworks to fairly apply AI, and also cover people management in the fair design of HR functions within Machine Learning. You'll also learn effective marketing strategies using data analytics, and how personalization can enhance and prolong the customer journey and lifecycle. Finally, you will hear from industry leaders who will provide you with insights into how AI and Big Data are revolutionizing the way we do business.

Frequently Asked Questions
When will I have access to the lectures and assignments?
What will I get if I subscribe to this Specialization?
Is financial aid available?
More questions? Visit the Learner Help Center.