Introdução a Machine Learning em uma Competição do Kaggle

Offered By
In this Guided Project, you will:

Como se familiarizar com conceitos básicos de Machine Learning criando um modelo de predição.

Construa, treine, teste avalia a performance de alguns modelos. 

Realize a submissão da sua primeira solução da competição no Kaggle.

2 horas
Beginner
No download needed
Split-screen video
Portuguese (Brazilian)
Desktop only

Neste curso de 1 hora, com base em projeto, você será capaz de entender como prever quais passageiros sobreviveriam ao naufrágio do Titanic e fazer sua primeira submissão em uma competição de Aprendizado de Máquina dentro da plataforma do Kaggle. Além disso, você, como iniciante em Machine Learning, irá se familiarizar e entender como iniciar um modelo preditivo usando conceitos básicos de aprendizado supervisionado. Vamos escolher classificadores para aprender, prever e testar os dados. Realizaremos uma Análise Exploratória de Dados (também chamada de EDA) para adquirir um bom entendimento sobre os dados que iremos trabalhar. Ao final, você saberá como medir o desempenho de um modelo, e será capaz de enviar seu modelo para a competição e obter uma pontuação do Kaggle. Nota: Este curso funciona melhor para aprendizes de regiões que tem como idioma o Português. Você encontra a versão desse mesmo conteúdo disponível em inglês para aprendizes da América do Norte em: https://www.coursera.org/projects/ml-basics-kaggle-competition Este projeto é indicado para iniciantes em Ciência de Dados que desejam fazer uma aplicação prática usando Aprendizado de Máquina e análise de dados. Para ter sucesso neste projeto é desejado que você tenha conhecimentos básicos em linguagem Python, utilizaremos bibliotecas como Numpy e Pandas. Você também deve previamente ter uma conta Google para utilizar o Google Colab e também uma conta na plataforma Kaggle (ambas sem custo).

Skills you will develop

  • Aprendizagem de Máquina

  • Machine Learning

  • Python Programming

  • Ciência de Dados

  • Kaggle

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Introdução ao Kaggle

  2. Análise Exploratória dos Dados (EDA)

  3. Pré processamento I - Analisando Dados Faltantes

  4. Pré-processamento II - Analisando Dados Faltantes

  5. Pré-processamento III - Codificando Dados Categóricos

  6. Dividindo o conjunto de dados em treinamento e teste

  7. Construindo nossos modelos de aprendizado de máquina

  8. Realize a submissão do seu projeto no Kaggle

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Frequently Asked Questions

By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

Guided Projects are not eligible for refunds. See our full refund policy.

Financial aid is not available for Guided Projects.

Auditing is not available for Guided Projects.

At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.