Data-Engineering-Kurse können Ihnen helfen zu lernen, wie Datenpipelines aufgebaut, Systeme integriert und Daten effizient verarbeitet werden. Sie können Fähigkeiten in ETL-Prozessen, Datenmodellierung, Orchestrierung und Umgang mit großen Datenmengen aufbauen. Viele Kurse stellen Tools und Plattformen für moderne Dateninfrastrukturen vor.

Mehrere Erzieher
Kompetenzen, die Sie erwerben: Apache Airflow, Data Modeling, Data Pipelines, Data Storage, Data Architecture, Requirements Analysis, Data Warehousing, Query Languages, Data Preprocessing, Apache Hadoop, Vector Databases, Data Lakes, Amazon Web Services, File Systems, Apache Spark, Database Systems, Feature Engineering, Dataflow, Data Integration, Data Management
Mittel · Berufsbezogenes Zertifikat · 3–6 Monate

Kompetenzen, die Sie erwerben: Apache Spark, Daten-Seen, Big Data, NoSQL, Datenbanken, Datenverarbeitung, Datensicherheit, SQL, Datenspeicher, Datenarchitektur, Relationale Datenbanken, Data-Warehousing, Apache Hadoop, Daten-Governance, Daten-Pipelines, Auszug
Anfänger · Kurs · 1–4 Wochen

IBM
Kompetenzen, die Sie erwerben: Generative KI, IBM Cognos-Analytik, Apache Spark, Datenanalyse, NoSQL, Web Scraping, Datenverarbeitung, Linux-Befehle, Datenbank-Design, Datenbankadministration, Python-Programmierung, Daten importieren/exportieren, SQL, Apache Airflow, Relationale Datenbanken, Datenspeicher, Apache Hadoop, Data-Warehousing, Auszug, Professionelles Netzwerken
Auf einen Abschluss hinarbeiten
Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

Snowflake
Kompetenzen, die Sie erwerben: Data Engineering, Data Pipelines, Database Management, Data Manipulation, Databases, Data Transformation, Extract, Transform, Load, Data Warehousing, Change Control, DevOps, Cloud Development, SQL, Data Integration, CI/CD, Application Development, Artificial Intelligence and Machine Learning (AI/ML), Role-Based Access Control (RBAC), Software Development Tools, Stored Procedure, Data Analysis
Anfänger · Berufsbezogenes Zertifikat · 1–3 Monate

Kompetenzen, die Sie erwerben: Web Scraping, IBM DB2, Datenbanken, MySQL, Grundsätze der Programmierung, Datenbank-Design, Big Data, Python-Programmierung, SQL, Daten importieren/exportieren, Datenspeicher, Relationale Datenbanken, Datenarchitektur, Data-Warehousing, PostgreSQL, Daten-Governance, Daten-Pipelines, Gespeicherte Prozedur, Datenumwandlung, Auszug
Anfänger · Spezialisierung · 3–6 Monate
Duke University
Kompetenzen, die Sie erwerben: Linux, Pandas (Python-Paket), Git (Versionskontrolle-System), JSON, Web Scraping, Versionskontrolle, Linux-Befehle, MySQL, Linux Verwaltung, Datenmanipulation, Big Data, AWS SageMaker, Shell-Skript, Datenverarbeitung, Python-Programmierung, Cloud-Technik, Jupyter, SQL, Microservices, Bash (Skriptsprache)
Anfänger · Spezialisierung · 3–6 Monate

Kompetenzen, die Sie erwerben: Model Deployment, Feature Engineering, PySpark, Data Import/Export, Big Data, Apache Spark, Dashboard, Data Architecture, Data Governance, Apache Kafka, Cloud Deployment, Apache Hadoop, Metadata Management, Data Storage, Apache Hive, Application Programming Interface (API), Data Quality, Data Cleansing, Applied Machine Learning, Cloud Services
Mittel · Spezialisierung · 3–6 Monate

Amazon Web Services
Kompetenzen, die Sie erwerben: Serverloses Rechnen, Sicherheitskontrollen, Datenarchitektur, Daten-Infrastruktur, AWS CloudFormation, Cloud-Anwendungen, AWS Identitäts- und Zugriffsmanagement (IAM), CI/CD, Cloud-Technik, Terraform, Amazon CloudWatch, Infrastruktur Architektur, Infrastruktur als Code (IaC), Amazon Webdienste
Anfänger · Kurs · 1–4 Wochen

DeepLearning.AI
Kompetenzen, die Sie erwerben: Analyse der Anforderungen, Sicherheitskontrollen, Skalierbarkeit, Cloud Computing, Data-Warehousing, Datenarchitektur, Systemanforderungen, Daten-Pipelines, Leistungsoptimierung, Amazon Webdienste, Auszug, Datenverarbeitung
Mittel · Kurs · 1–4 Wochen

Kompetenzen, die Sie erwerben: Pandas (Python-Paket), Datenanalyse, Datenmanipulation, Datenbanken, Python-Programmierung, SQL, Relationale Datenbanken, Abfragesprachen, Transaktionsverarbeitung, Jupyter, Gespeicherte Prozedur
Anfänger · Kurs · 1–3 Monate

Kompetenzen, die Sie erwerben: Linux, Algorithmen, Software-Visualisierung, Einheitstest, Datenbank Management, Grundsätze der Programmierung, Software Versionierung, MySQL, Testgetriebene Entwicklung (TDD), Linux-Befehle, Datenintegrität, Datenbankadministration, Django (Web-Framework), Befehlszeilen-Schnittstelle, Data-Warehousing, Abfragesprachen, Computergestütztes Denken, Kollaborative Software, Pseudocode, Datenbankarchitektur und -verwaltung
Anfänger · Berufsbezogenes Zertifikat · 3–6 Monate

Kompetenzen, die Sie erwerben: Integrierte Entwicklungsumgebungen, Web Scraping, Einheitstest, Datenbanken, Datenmanipulation, Grundsätze der Programmierung, SQL, Python-Programmierung, Schnittstelle zur Anwendungsprogrammierung (API), Style Guides, Datenumwandlung, Auszug, Datenverarbeitung
Mittel · Kurs · 1–4 Wochen
Data Engineer ist die Praxis des Entwerfens, Erstellens und Pflegens von Systemen und Architekturen, die es Unternehmen ermöglichen, Daten effektiv zu sammeln, zu speichern und zu analysieren. In der heutigen datengesteuerten Welt, in der Unternehmen auf Daten angewiesen sind, um fundierte Entscheidungen zu treffen, den Betrieb zu optimieren und das Kundenerlebnis zu verbessern, spielt sie eine entscheidende Rolle. Data Engineers sorgen dafür, dass Daten zugänglich, zuverlässig und sicher sind, und ermöglichen es Unternehmen so, das volle Potenzial ihrer Daten zu nutzen.
Im Bereich des Data Engineering gibt es eine Vielzahl von Stellen, darunter Data Engineer, Data Architect, ETL-Entwickler und Data Warehouse Engineer. Diese Positionen beinhalten oft die Arbeit mit großen Datensätzen, die Entwicklung von Datenpipelines und die Zusammenarbeit mit Datenwissenschaftlern und -analysten, um sicherzustellen, dass die Daten strukturiert und für die Analyse verfügbar sind. Mit der wachsenden Nachfrage nach Datenexperten steigen die Möglichkeiten in diesem Bereich in Branchen wie Finanzen, Gesundheitswesen, Technologie und Einzelhandel.
Um eine Karriere im Bereich Data Engineering anzustreben, sollten Sie sich auf die Entwicklung eines Bereichs von technischen Fähigkeiten konzentrieren. Zu den Schlüsselkompetenzen gehören die Beherrschung von Programmiersprachen wie Python und SQL, Kenntnisse von Data Warehousing-Lösungen und Vertrautheit mit Cloud-Plattformen wie AWS oder Google Cloud. Darüber hinaus sind Kenntnisse in den Bereichen Datenmodellierung, ETL-Prozesse und Big Data-Technologien wie Hadoop und Spark von Vorteil. Soft skills wie Problemlösung und effektive Kommunikation sind ebenfalls wichtig für die Zusammenarbeit mit funktionsübergreifenden Teams.
Es gibt mehrere ausgezeichnete Online-Kurse für diejenigen, die sich für Data Engineering interessieren. Zu den bemerkenswerten Optionen gehören das DeepLearning.AI Data Engineer Professional Certificate und das IBM Data Engineering Professional Certificate. Diese Programme bieten einen umfassenden Lehrplan, der die wesentlichen Fähigkeiten und Tools abdeckt, die in diesem Bereich benötigt werden, was sie zu einer guten Wahl für Lernende in verschiedenen Stadien ihrer Karriere macht.
Ja. Sie können Data Engineer auf Coursera auf zwei Arten kostenlos lernen:
Wenn Sie weiterlernen, ein Zertifikat in Data Engineering erwerben oder den vollen Kurszugang nach der Vorschau oder Probezeit freischalten möchten, können Sie ein Upgrade durchführen oder finanzielle Unterstützung beantragen.
Um Data Engineering effektiv zu erlernen, sollten Sie zunächst Ihren aktuellen Kenntnisstand und die verbesserungswürdigen Bereiche ermitteln. Beginnen Sie mit grundlegenden Kursen, die Programmierung und Datenbankmanagement abdecken. Steigen Sie allmählich zu spezielleren Themen wie Data Warehousing und Cloud-Technologien auf. Führen Sie praktische Projekte durch, um das Gelernte anzuwenden, und schließen Sie sich Online-Communities oder Foren an, um mit anderen Lernenden und Fachleuten auf diesem Gebiet in Kontakt zu treten.
Data Engineer-Kurse decken in der Regel eine Reihe von Themen ab, darunter Datenmodellierung, ETL-Prozesse (Extrahieren, Transformieren, Laden), Data Warehousing und Big Data-Technologien. Sie können auch Cloud-Computing-Plattformen, Daten-Pipeline-Design und Daten-Governance erforschen. Die Kurse beinhalten oft praktische Übungen und Projekte, um das Verständnis und die Anwendung dieser Konzepte in realen Szenarien zu vertiefen.
Für das Training und die Weiterbildung von Mitarbeitern im Bereich Data Engineering sind Programme wie das IBM Data Warehouse Engineer Professional Certificate und das Snowflake Data Engineering Professional Certificate eine ausgezeichnete Wahl. Diese Kurse vermitteln Fachleuten die notwendigen Fähigkeiten, um Daten effektiv zu verwalten und zu analysieren, und eignen sich daher für Unternehmen, die die Fähigkeiten ihrer Mitarbeiter im Bereich Data Engineering verbessern möchten.