- perception
- features and boundaries
- Object Recognition
- Camera and imaging
- 3d reconstruction
- Fourier Transform
- High-Dynamic-Range (HDR) Imaging
- Image Formation
- Convolution and Deconvolution
- Working Principles of a Camera
- Scale Space
- Active Contours
First Principles of Computer Vision Specialization
Master the First Principles of Computer Vision. Advance the mathematical and physical algorithms empowering computer vision
Offered By


What you will learn
Master the working principles of a digital camera and learn the fundamentals of imaging processing
Create a theory of feature detection and develop algorithms for extracting features from images
Explore novel methods for using visual cues (shading, defocus, etc.) to recover the 3D shape of an object from multiple images or viewpoints
Get exposed to fundamental perceptions tasks such as image segmentation, object tracking, and object recognition
Skills you will gain
About this Specialization
Applied Learning Project
Learners will develop the fundamental knowledge of computer vision by applying the models and tools including: image processing, image features, constructing 3D scene, image segmentation and object recognition. The specialization includes roughly 250 assessment questions. Proficiency in the fundamentals of computer vision is valued by a wide range of technology companies and research organizations.
Learners should know the fundamentals of linear algebra and calculus. Knowing any programming language is beneficial, but not required.
Learners should know the fundamentals of linear algebra and calculus. Knowing any programming language is beneficial, but not required.
How the Specialization Works
Take Courses
A Coursera Specialization is a series of courses that helps you master a skill. To begin, enroll in the Specialization directly, or review its courses and choose the one you'd like to start with. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. It’s okay to complete just one course — you can pause your learning or end your subscription at any time. Visit your learner dashboard to track your course enrollments and your progress.
Hands-on Project
Every Specialization includes a hands-on project. You'll need to successfully finish the project(s) to complete the Specialization and earn your certificate. If the Specialization includes a separate course for the hands-on project, you'll need to finish each of the other courses before you can start it.
Earn a Certificate
When you finish every course and complete the hands-on project, you'll earn a Certificate that you can share with prospective employers and your professional network.

There are 5 Courses in this Specialization
Camera and Imaging
This course covers the fundamentals of imaging – the creation of an image that is ready for consumption or processing by a human or a machine. Imaging has a long history, spanning several centuries. But the advances made in the last three decades have revolutionized the camera and dramatically improved the robustness and accuracy of computer vision systems. We describe the fundamentals of imaging, as well as recent innovations in imaging that have had a profound impact on computer vision.
Features and Boundaries
This course focuses on the detection of features and boundaries in images. Feature and boundary detection is a critical preprocessing step for a variety of vision tasks including object detection, object recognition and metrology – the measurement of the physical dimensions and other properties of objects. The course presents a variety of methods for detecting features and boundaries and shows how features extracted from an image can be used to solve important vision tasks.
3D Reconstruction - Single Viewpoint
This course focuses on the recovery of the 3D structure of a scene from its 2D images. In particular, we are interested in the 3D reconstruction of a rigid scene from images taken by a stationary camera (same viewpoint). This problem is interesting as we want the multiple images of the scene to capture complementary information despite the fact that the scene is rigid and the camera is fixed. To this end, we explore several ways of capturing images where each image provides additional information about the scene.
3D Reconstruction - Multiple Viewpoints
This course focuses on the recovery of the 3D structure of a scene from images taken from different viewpoints. We start by first building a comprehensive geometric model of a camera and then develop a method for finding (calibrating) the internal and external parameters of the camera model. Then, we show how two such calibrated cameras, whose relative positions and orientations are known, can be used to recover the 3D structure of the scene. This is what we refer to as simple binocular stereo. Next, we tackle the problem of uncalibrated stereo where the relative positions and orientations of the two cameras are unknown. Interestingly, just from the two images taken by the cameras, we can both determine the relative positions and orientations of the cameras and then use this information to estimate the 3D structure of the scene.
Offered by

Columbia University
For more than 250 years, Columbia has been a leader in higher education in the nation and around the world. At the core of our wide range of academic inquiry is the commitment to attract and engage the best minds in pursuit of greater human understanding, pioneering new discoveries and service to society.
Frequently Asked Questions
What is the refund policy?
Can I just enroll in a single course?
Is financial aid available?
Can I take the course for free?
Is this course really 100% online? Do I need to attend any classes in person?
How long does it take to complete the Specialization?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Will I earn university credit for completing the Specialization?
What will I be able to do upon completing the Specialization?
More questions? Visit the Learner Help Center.