Predictive-Analytics-Kurse können Ihnen helfen zu verstehen, wie Daten genutzt werden, um Vorhersagen zu treffen und Muster sichtbar zu machen. Sie können Fähigkeiten in Modellierung, Statistik, Bewertung und Analysewerkzeugen aufbauen. Viele Kurse stellen Beispiele und Workflows aus datengetriebenen Projekten vor.

University of California San Diego
Kompetenzen, die Sie erwerben: Algorithmen für maschinelles Lernen, Prädiktive Modellierung, Klassifizierungsalgorithmen, Modellevaluation, Maschinelles Lernen, Web Scraping, MLOps (Maschinelles Lernen Operations), Überwachtes Lernen, Datenvisualisierungssoftware, Datenmanipulation, Datenvalidierung, Python-Programmierung, Prädiktive Analytik, Modell-Bereitstellung, Datenverarbeitung, Feature Technik, Angewandtes maschinelles Lernen, Design Thinking, Flask (Web-Framework), Datenvisualisierung
Mittel · Spezialisierung · 3–6 Monate

Dartmouth College
Kompetenzen, die Sie erwerben: Business Ethics, Predictive Modeling, Predictive Analytics, Scikit Learn (Machine Learning Library), Model Evaluation, Digital Transformation, Data-Driven Decision-Making, Feature Engineering, Regression Analysis, Supervised Learning, Python Programming, Cloud Computing, Data Quality, Classification Algorithms, Artificial Neural Networks
Mittel · Kurs · 1–3 Monate

University of Minnesota
Kompetenzen, die Sie erwerben: Statistische Modellierung, Statistische Methoden, Excel-Formeln, Trendanalyse, Modellevaluation, Prädiktive Modellierung, Regressionsanalyse, Datenvorverarbeitung, Zeitreihenanalyse und Vorhersage, Prädiktive Analytik, Pivot-Tabellen und Diagramme, Vorhersage, Datenumwandlung, Microsoft Excel
Gemischt · Kurs · 1–4 Wochen

Illinois Tech
Kompetenzen, die Sie erwerben: Predictive Analytics, Advanced Analytics, Data Cleansing, Unsupervised Learning, Data Analysis, Data Mining, Classification Algorithms, Supervised Learning, Decision Tree Learning, Machine Learning, Artificial Neural Networks
Mittel · Kurs · 1–3 Monate

University of Minnesota
Kompetenzen, die Sie erwerben: Predictive Modeling, Predictive Analytics, Business Analytics, Customer Analysis, Project Design, Applied Machine Learning, Solution Design, Sprint Planning, Machine Learning, Brainstorming, Trend Analysis, Design Thinking, Analysis, Decision Tree Learning, Deep Learning, Time Series Analysis and Forecasting, Quality Control
Anfänger · Kurs · 1–3 Monate

University of Pennsylvania
Kompetenzen, die Sie erwerben: Statistische Modellierung, Klassifizierungs- und Regressionsbaum (CART), Modellevaluation, Prädiktive Modellierung, Maschinelles Lernen, Regressionsanalyse, Logistische Regression, Überwachtes Lernen, Random Forest Algorithmus, Python-Programmierung, Prädiktive Analytik, Lernen mit Entscheidungsbäumen, Analytics, Feature Technik, Unüberwachtes Lernen, Methoden des Maschinellen Lernens, Vorhersage
Anfänger · Kurs · 1–4 Wochen

University of Minnesota
Kompetenzen, die Sie erwerben: Business Modellierung, Unternehmensanalytik, Excel-Formeln, Statistik, Modellevaluation, Prädiktive Modellierung, Regressionsanalyse, Operations Research, Datenvorverarbeitung, Wahrscheinlichkeitsverteilung, Analytics, Zeitreihenanalyse und Vorhersage, Mathematische Modellierung, Prädiktive Analytik, Simulationen, Verwaltung der Arbeitskräfte, Vorhersage, Wahrscheinlichkeit, Microsoft Excel, Lieferkette
Anfänger · Spezialisierung · 3–6 Monate

Kompetenzen, die Sie erwerben: Prompt Engineering, Data Storytelling, Data Presentation, Dashboard, Interactive Data Visualization, Generative AI, Data Ethics, Responsible AI, Infographics, Data Visualization, Anomaly Detection, Excel Formulas, Predictive Modeling, Data Visualization Software, Microsoft Copilot, Business Reporting, Risk Analysis, Text Mining, Predictive Analytics, Automation
Mittel · Berufsbezogenes Zertifikat · 3–6 Monate

Kompetenzen, die Sie erwerben: Regression Analysis, Statistical Hypothesis Testing, Statistical Analysis, Correlation Analysis, Predictive Analytics, Data Analysis, Minitab, Statistical Methods, Forecasting, Business Analytics, Quantitative Research, Data-Driven Decision-Making, Descriptive Statistics, Case Studies, Financial Analysis, Microsoft Excel
Gemischt · Kurs · 1–3 Monate
Kompetenzen, die Sie erwerben: Generative KI, Prädiktive Modellierung, Tabellenverarbeitungssoftware, Risikomanagement, Finanzielle Berichterstattung, Investment Management, Finanzielle Daten, Finanzielle Analyse, Analyse, Interaktive Datenvisualisierung, Prädiktive Analytik, Risikoanalyse, Automatisierung, Erweiterte Analytik, Portfolio Management, Marktdaten, Finanzielle Prognosen, Power BI
Anfänger · Kurs · 1–4 Wochen

University of California San Diego
Kompetenzen, die Sie erwerben: Regressionsanalyse, Klassifizierungsalgorithmen, Datenvorverarbeitung, Logistische Regression, Prädiktive Modellierung, Algorithmen für maschinelles Lernen, Scikit Learn (Bibliothek für Maschinelles Lernen), Statistische Methoden, Überwachtes Lernen, Datenmanipulation, Prädiktive Analytik, Angewandtes maschinelles Lernen, Feature Technik, Tensorflow, Design Thinking, Daten bereinigen
Mittel · Kurs · 1–3 Monate

Dartmouth College
Kompetenzen, die Sie erwerben: Digital Transformation, Business Ethics, Customer experience improvement, Predictive Modeling, Predictive Analytics, Simulation and Simulation Software, Business Transformation, Scikit Learn (Machine Learning Library), Model Evaluation, Operations Research, Analytics, Business Technologies, Business Analytics, Data-Driven Decision-Making, Feature Engineering, Business Modeling, Systems Thinking, Complex Problem Solving, Process Optimization, Technology Strategies
Mittel · Spezialisierung · 3–6 Monate
Predictive Analytics ist ein Zweig der Datenanalyse, der statistische Algorithmen verwendet, um Vorhersagen über zukünftige Ereignisse oder Ergebnisse zu treffen. Dazu gehört die Analyse historischer und aktueller Daten, um Muster, Trends und Beziehungen zu erkennen, die dann für fundierte Vorhersagen über die Zukunft genutzt werden können.
Predictive Analytics nutzt verschiedene statistische Modelle und Techniken des maschinellen Lernens, um große Datenmengen zu verarbeiten. Diese Modelle analysieren Datenmuster, identifizieren potenzielle Korrelationen und erstellen Prognosemodelle, um Ergebnisse vorherzusagen. Durch die Anwendung dieser Modelle auf neue Dateneingaben kann die prädiktive Analytik wertvolle Einblicke und Vorhersagen über künftiges Verhalten, Trends und Ergebnisse liefern.
Dieser Bereich ist in vielen Branchen von großem Wert, unter anderem im Finanzwesen, im Gesundheitswesen, im Marketing und im elektronischen Handel. Sie hilft Unternehmen, Entscheidungsprozesse zu optimieren, Risiken zu minimieren und Chancen zu erkennen. Im Marketing kann die prädiktive Analytik beispielsweise zur Vorhersage des Kundenverhaltens und der Kundenpräferenzen eingesetzt werden, so dass Unternehmen Marketingkampagnen und personalisierte Erlebnisse für ihre Kunden maßschneidern können.
Zusammenfassend lässt sich sagen, dass Predictive Analytics ein leistungsfähiges Tool ist, mit dem Unternehmen auf der Grundlage historischer und aktueller Daten fundierte Vorhersagen über zukünftige Ereignisse oder Ergebnisse treffen können. Sie ermöglicht eine bessere Entscheidungsfindung und ein besseres Risikomanagement und hilft Unternehmen, neue Chancen zu erkennen.
Predictive Analytics ist ein Zweig der Datenanalyse, der statistische Algorithmen und Techniken des Maschinellen Lernens verwendet, um die Wahrscheinlichkeit zukünftiger Ergebnisse auf der Basis historischer Daten zu ermitteln. Sie ist wichtig, weil sie Unternehmen dabei hilft, fundierte Entscheidungen zu treffen, Operationen zu optimieren und das Kundenerlebnis zu verbessern, indem sie Bedürfnisse und Verhaltensweisen vorhersagt. Durch den Einsatz von prädiktiver Analytik können Unternehmen Risiken verringern, die Effizienz steigern und das Wachstum fördern.
Im Bereich der prädiktiven Analytik gibt es verschiedene Beschäftigungsmöglichkeiten. Zu den gängigen Positionen gehören Datenanalysten, Data Scientists, Business Intelligence-Analysten und Predictive Modeler. Diese Positionen erfordern oft eine Mischung aus analytischen Fähigkeiten und Domänenwissen, die es Fachleuten ermöglicht, Daten zu interpretieren und umsetzbare Erkenntnisse zu liefern, die strategische Entscheidungen beeinflussen können.
Um in der prädiktiven Analytik erfolgreich zu sein, sollten Sie eine solide Grundlage in Statistik, Data Mining und Maschinellem Lernen entwickeln. Die Beherrschung von Programmiersprachen wie Python oder R ist ebenfalls unerlässlich, da diese Tools häufig für die Datenanalyse verwendet werden. Darüber hinaus wird das Verständnis von Datenvisualisierungstechniken und die Kenntnis von Datenbanken Ihre Fähigkeit verbessern, Ergebnisse effektiv zu kommunizieren.
Es gibt mehrere ausgezeichnete Online-Kurse zum Erlernen der prädiktiven Analytik. Zu den bemerkenswerten Optionen gehören der Kurs KI \& Predictive Analytics with Python, der sich auf die Anwendung von KI-Techniken auf die prädiktive Analytik konzentriert, und der Kurs Practical Predictive Analytics: Modelle und Methoden, der die wichtigsten Modelle und Methoden in diesem Bereich behandelt.
Ja. Sie können Predictive Analytics auf Coursera auf zwei Arten kostenlos erlernen:
Wenn Sie weiterlernen, ein Zertifikat in prädiktiver Analytik erwerben oder den vollen Kurszugang nach der Vorschau oder Probezeit freischalten möchten, können Sie ein Upgrade durchführen oder finanzielle Unterstützung beantragen.
Um prädiktive Analytik zu erlernen, sollten Sie zunächst Einführungskurse besuchen, in denen die Grundlagen der Datenanalyse und statistischer Methoden vermittelt werden. Arbeiten Sie an praktischen Projekten, um das Gelernte in realen Szenarien anzuwenden. Nutzen Sie Online-Ressourcen wie Tutorien und Foren, um Ihr Verständnis zu vertiefen und sich mit anderen auf diesem Gebiet auszutauschen.
Typische Themen, die in Kursen zur prädiktiven Analytik behandelt werden, sind Datenvorverarbeitung, Regressionsanalyse, Klassifizierungstechniken, Zeitreihenprognosen und Modellevaluation. Darüber hinaus wird in den Kursen häufig die Verwendung verschiedener Tools und Programmiersprachen wie Python und R untersucht, um Vorhersagemodelle effektiv zu implementieren.
Für das Training und die Weiterbildung von Mitarbeitern in der prädiktiven Analytik sind Kurse wie Python Data Products for Predictive Analytics Spezialisierung und Predictive Analytics sehr zu empfehlen. Diese Programme bieten ein umfassendes Training, das die Teilnehmer mit den notwendigen Fähigkeiten ausstattet, um Predictive Analytics in ihren jeweiligen Bereichen anzuwenden.