About this Course
4.8
131 ratings
26 reviews
100% online

100% online

Start instantly and learn at your own schedule.
Flexible deadlines

Flexible deadlines

Reset deadlines in accordance to your schedule.
Hours to complete

Approx. 13 hours to complete

Suggested: 6 weeks of material; 5 to 7 hours per week work for students...
Available languages

English

Subtitles: English
100% online

100% online

Start instantly and learn at your own schedule.
Flexible deadlines

Flexible deadlines

Reset deadlines in accordance to your schedule.
Hours to complete

Approx. 13 hours to complete

Suggested: 6 weeks of material; 5 to 7 hours per week work for students...
Available languages

English

Subtitles: English

Syllabus - What you will learn from this course

Week
1
Hours to complete
3 hours to complete

Course Introduction; Angular Velocity; Angular Acceleration

In this section students will learn to derive the "derivative formula." We will define angular velocity for 3D motion and learn to determine and solve for the Angular Acceleration for a body. ...
Reading
6 videos (Total 53 min), 13 readings, 1 quiz
Video6 videos
Module 2: Derive the “Derivative Formula”; Define Angular Velocity for 3D Motion12m
Module 3: Define the Properties of Angular Velocity for 3D Motion5m
Module 4: Solve for the Angular Velocity of a body undergoing 3D Motion10m
Module 5: Determine the Angular Acceleration for a Moving Reference Frame Relative to another Reference Frame8m
Module 6: Solve for the Angular Acceleration for a Body expressed in a Series of Multiple Reference Frames10m
Reading13 readings
Syllabus10m
Consent Form10m
Pdf version of Course Introduction Lecture10m
Pdf version Module 2: Derive the “Derivative Formula”; Define Angular Velocity for 3D Motion Lecture10m
Pdf version of Module 3: Define the Properties of Angular Velocity for 3D Motion Lecture10m
Pdf version of Module 4: Solve for the Angular Velocity of a body undergoing 3D Motion Lecture10m
Worksheet Solutions: Solve for the Angular Velocity of a Body Undergoing 3D Motion10m
Pdf version of Module 5: Determine the Angular Acceleration for a Moving Reference Frame Relative to another Reference Frame Lecture10m
Pdf version of Module 6: Solve for the Angular Acceleration for a Body expressed in a Series of Multiple Reference Frames Lecture10m
Worksheet Solutions: Solve for the Angular Acceleration for a Body Expressed in a Series of Multiple Reference Frames10m
Get More from Georgia Tech10m
Practice Problems10m
Solution of Quiz 110m
Quiz1 practice exercise
Course Introduction; Angular Velocity; Angular Acceleration6m
Week
2
Hours to complete
3 hours to complete

Velocities in Moving Reference Frames; Accelerations in Moving Reference Frames; The Earth as a Moving Frame

In this section students will learn about velocities in moving reference frames, accelerations in moving reference frames, and the Earth as a moving frame. ...
Reading
6 videos (Total 64 min), 11 readings, 1 quiz
Video6 videos
Module 8: Solve for Velocities Expressed in Moving Frames of Reference10m
Module 9: Accelerations expressed in Moving Frames of Reference10m
Module 10: Solve for the Velocity and the Acceleration for Bodies Undergoing 3D Motion and Expressed in Moving Frames of Reference12m
Module 11: Equations of Motion for a Particle Moving Close to the Earth12m
Module 12: Solve a Problem for the Motion of Particles Moving Close to the Earth6m
Reading11 readings
Pdf version of Module 7: Velocities expressed in Moving Frames of Reference Lecture10m
Pdf version of Module 8: Solve for Velocities Expressed in Moving Frames of Reference Lecture10m
Worksheet Solutions: Solve for Velocities Expressed in Moving Frames of Reference10m
Pdf version of Module 9: Accelerations expressed in Moving Frames of Reference Lecture10m
Pdf version of Module 10: Solve for the Velocity and the Acceleration for Bodies Undergoing 3D Motion and Expressed in Moving Frames of Reference Lecture10m
Worksheet Solutions: Solve for the Velocity and the Acceleration for Bodies Undergoing 3D Motion and Expressed in Moving Frames of Reference10m
Pdf version of Module 11: Equations of Motion for a Particle Moving Close to the Earth Lecture10m
Pdf version of Module 12: Solve a Problem for the Motion of Particles Moving Close to the Earth Lecture10m
Earn a Georgia Tech Badge/Certificate/CEUs10m
Practice Problems10m
Solution of Quiz 210m
Quiz1 practice exercise
Velocities in Moving Reference Frames; Accelerations in Moving Reference Frames; The Earth as a Moving Frame6m
Week
3
Hours to complete
3 hours to complete

Eulerian Angles; Eulerian Angles Rotation Matrices; Angular Momentum in 3D; Inertial Properties of 3D Bodies

In this section students will learn about Eulerian Angles rotation matrices, angular momentum in 3D, and intertial properties of 3D bodies....
Reading
8 videos (Total 70 min), 10 readings, 1 quiz
Video8 videos
Module 14: Angular Velocity of Bodies in 3D Motion using Eulerian Angles6m
Module 15: Derive Rotational Transformation Matrices6m
Module 16: Solve a Problem Using Rotational Transformation Matrices7m
Module 17: Review Particle Kinetics; Newton’s Laws for Particles; and Euler’s 1st Law for Bodies10m
Module 18: Review the Definition of Angular Momentum; and Euler’s 2nd Law for Bodies7m
Module 19: Angular Momentum for Bodies in 3D Motion12m
Module 20: Review Mass Moments of Inertia and Products of Inertia; Inertial Property Matrix11m
Reading10 readings
Pdf version of Module 13: Eulerian Angles for 3D Rotational Motion Lecture10m
Pdf version of Module 14: Angular Velocity of Bodies in 3D Motion using Eulerian Angles Lecture10m
Pdf version of Module 15: Derive Rotational Transformation Matrices Lecture10m
Pdf version of Module 16: Solve a Problem Using Rotational Transformation Matrices Lecture10m
Pdf version of Module 17: Review Particle Kinetics; Newton’s Laws for Particles; and Euler’s 1st Law for Bodies Lecture10m
Pdf version of Module 18: Review the Definition of Angular Momentum; and Euler’s 2nd Law for Bodies Lecture10m
Pdf version of Module 19: Angular Momentum for Bodies in 3D Motion Lecture10m
Pdf version of Module 20: Review Mass Moments of Inertia and Products of Inertia; Inertial Property Matrix Lecture10m
Practice Problems10m
Solution of Quiz 310m
Quiz1 practice exercise
Eulerian Angles; Eulerian Angles Rotation Matrices; Angular Momentum in 3D; Inertial Properties of 3D Bodies6m
Week
4
Hours to complete
2 hours to complete

Translational and Rotational Transformations of Inertial Properties; Principal Axes and Principal Moments of Inertia

In this section students will learn about translational and rotational transformations of inertial properties, and principal axes and principal moments of inertia....
Reading
6 videos (Total 47 min), 9 readings, 1 quiz
Video6 videos
Module 22: Rotational Transformation of Inertial Properties4m
Module 23: Rotational Transformation of Inertial Properties (cont)8m
Module 24: Define Principal Axes and Principal Moments of Inertia4m
Module 25: Determine Principal Axes and Principal Moments of Inertia10m
Module 26: Solve for Principal Axes and Principal Moments of Inertia with an Example11m
Reading9 readings
Pdf version of Module 21: Translational Transformation of Inertial Properties Lecture10m
Pdf Version of Module 22: Rotational Transformation of Inertial Properties Lecture10m
Pdf Version of Module 23: Rotational Transformation of Inertial Properties (cont) Lecture10m
Pdf Version of Module 24: Define Principal Axes and Principal Moments of Inertia Lecture10m
Pdf Version of Module 25 Determine Principal Axes and Principal Moments of Inertia Lecture10m
Pdf Version of Module 26: Solve for Principal Axes and Principal Moments of Inertia Lecture10m
Worksheet Solutions: Solve for Principal Axes and Principal Moments of Inertia with an Example10m
Practice Problems10m
Solution of Quiz 410m
Quiz1 practice exercise
Translational and Rotational Transformations of Inertial Properties; Principal Axes and Principal Moments of Inertia.6m
4.8
26 ReviewsChevron Right

Top Reviews

By ACNov 24th 2016

The instructor does a fascinating job of structuring and delivering the course material. The concepts are simplified and well explained with the help of practical applications and relevance.

By RAFeb 13th 2017

It really changed my perception of viewing things around me. Dr. Whiteman is an expert at teaching mechanics. I recommend this course for all the non-circuit branches of engineering.

Instructor

Avatar

Dr. Wayne Whiteman, PE

Senior Academic Professional
Woodruff School of Mechanical Engineering

About Georgia Institute of Technology

The Georgia Institute of Technology is one of the nation's top research universities, distinguished by its commitment to improving the human condition through advanced science and technology. Georgia Tech's campus occupies 400 acres in the heart of the city of Atlanta, where more than 20,000 undergraduate and graduate students receive a focused, technologically based education....

Frequently Asked Questions

  • Once you enroll for a Certificate, you’ll have access to all videos, quizzes, and programming assignments (if applicable). Peer review assignments can only be submitted and reviewed once your session has begun. If you choose to explore the course without purchasing, you may not be able to access certain assignments.

  • When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

More questions? Visit the Learner Help Center.